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Abstract— The estimation and forecasting environmental
plume movement based on information from mobile sensors
recently received renewed attention due to the Gulf coast oil
and Icelandic ash problems, and remains of sustained interest
today in homeland security settings (plant explosions, dirty
bombs, etc.). The present work refines and tests the scientific
algorithms at the heart of this problem. In particular, we
combine the Ensemble Kalman Filter (EnKF), which provides
a computationally feasible low-rank approximation of the un-
certainty of the estimate, with our recently developed Dynamic
Adaptive Observation (DAO) algorithm for optimizing feasible
sensor vehicle trajectories that minimize forecast uncertainty. A
numerical experiment is performed which applies this combined
EnKF/DAO algorithm to determine waypoints along optimized
feasible sensor vehicle trajectories that improve the forecast
of an environmental plume represented by a passive scalar
convectively driven in a 2D fluid flow.

I. INTRODUCTION

Adaptive Observation (AO) is the problem of planning
optimized trajectories of sensor-equipped vehicles for the
purpose of minimizing forecast uncertainty. This class of
problems is thus something that is a fusion of more pure
“control” and “estimation” problems, as it contains important
elements of both. Proposed methods so solve problems of
this class are either distributed or centralized in nature.

In distributed AO strategies, such as those proposed in [1],
[2], [3], and [4], each mobile sensor has little knowledge of
the overall sensed system, and sensor deployment is planned
locally. The hope is that simple local rules might lead to
vehicle motions that distribute the sensors effectively. This
is achieved by distributing sensors essentially uniformly, per-
haps clustering sensors in areas of particular interest. Their
inherent simplicity make such strategies easy to implement.

As the size of the domain under consideration increases
with respect to the field of view of the sensors, the ef-
fectiveness of distributed AO algorithms diminishes due
to the sparseness of the sensor coverage attained. Further,
distributed AO algorithms essentially neglect the dynamics
of the evolution of the system under consideration, which
further reduces forecast accuracy. In such problems, it is
beneficial to plan the sensor movement more deliberately
with a centralized AO algorithm, as suggested by [5], [6],
and [7]. Such algorithms account for the current uncertainty
distribution and the underlying system model in order to
optimized sensor positions or trajectories that maximally
reduce the forecast uncertainty. Due to the model complexity,
centralized AO algorithms are computationally intensive, and
thus cannot be solved locally on the individual vehicles.
Rather, the necessary computations are performed centrally
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(e.g., on a supercomputer cluster), and optimized sensor
waypoints are periodically broadcast back to the sensor
vehicles. We restrict our focus in this paper to centralized
AO strategies applied to fluid-mechanical systems.

The various models to which centralized AO algorithms
have been applied in the past have been assumed to evolve
slowly as compared with the time scales of motion of the
sensor vehicles themselves; thus, previous centralized AO
algorithms have not focused on respecting the practical con-
straints on the vehicle dynamics themselves. In the formu-
lation considered here, however, this assumption is relaxed;
that is, the time scales of the fluid flow and the time scales of
the vehicle dynamics are taken to be comparable. Towards
this end, we developed a new AO algorithm, dubbed the
Dynamic Adaptive Observation (DAO), which incorporates
vehicle dynamics while minimizing the forecast uncertainty.

In this paper, we formulate the DAO algorithm and
demonstrate its capabilities in conjunction with the Ensemble
Kalman Filter (EnKF) on a relevant 2D convection-driven
environmental plume problem. Section II presents the DAO
formulation, and §III reviews the EnKF. In §IV both DAO
and EnKF are combined in a numerical experiment which
estimates an environmental plume.

II. DAO: DYNAMIC ADAPTIVE OBSERVATION

The state vector x(t) ∈ Rn is assumed to be governed by
a nonlinear ODE obtained via spatial discretization of a PDE
over a physical domain Ω of interest:

dx(t)
dt

= f(x(t),d(t),w(t)), (1)

where w(t) ∼ N(0,W ) models the (unknown) external
disturbances and d(t) models is the (known) external forcing.
Assume there are M sensor vehicles moving within the
domain Ω; the continuous-time dynamics of the ith vehicle,
with state qi(t) ∈ Rm and control ui(t), is taken to be

dqi(t)
dt

= g(qi(t),ui(t)). (2)

Each vehicle moves about the domain Ω continuously, while
taking measurements yk at discrete times tk:

yi
k = hi

k(xk,qi
k) + vi

k, (3)

where vi
k ∼ N(0, Ri

k(qi)); note that vehicle states such as
position, heading, and velocity affect both the measurement
operator h as well as the statistics of the measurement
noise. (For convenience, dependence on the vehicle state q
is notationally suppressed in the analysis that follows.) The
collection of measurements from all vehicles is given by

yk =

 y1
k
...

yM
k

, hk =

 h1
k(xk)

...
hM

k (xk)

,Rk =

R1
k 0

. . .
0 RM

k

. (4)
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Fig. 1. Cartoon illustrating the problem formulation. ui(t) affects the
continuous-time evolution of sensor vehicle trajectories qi(t). In turn, the
sensor vehicle positions at the measurement times, qi

k , affect the discrete-
time update of the estimation error covariance Pk; this covariance otherwise
evolves continuously between the measurements, and between tK and tF .
The cost J depends on PF and ui(t) within time window [t0, tK ]; a set
of controls ui(t) is sought to minimize this cost. Dashed arrows denote
continuous-time propagations; solid arrows denote discrete-time updates.

For state estimation, we use a mixed Kalman Filter (KF)
formulation with a continuous-time state evolution between
measurements, together with discrete-time measurement up-
dates. Denote the state estimate x̂ and estimation error
covariance P , E{δx δxT }, where δx , x − x̂. The
continuous-time propogation of P between measurements is
given by

dP (t)
dt

= AP (t) + P (t)AT + BWBT , (5)

where A and B are given by (1) linearized about x̂(t). The
discrete-time update of P at each measurement is given by

P+
k = (I−LkHk)P−

k , Lk = P−
k HT

k (HkP−
k HT

k +Rk)−1,
(6)

where ()− and ()+ denote before the update and after the
update, respectively, Hk is given by (4) linearized about x̂k,
and Lk is the optimal KF feedback gain. Fig. 1 illustrates
this mixed continuous/discrete time formulation, and the
relationships between the several quantities involved. Note
that, as P (t) is updated during each measurement, the
trajectory P (t) is piecewise smooth.

The problem DAO is formulated to solve is framed as
follows: At time t0, the initial vehicle states qi

0 and estima-
tion error covariance P0 are known. Design a set of control
trajectories ui(t) for each vehicle over the time window
[t0, tK ] to minimize a cost function balancing control effort
and forecast accuracy at the final time tF , where tF ≥ tK ,
conditioned on the measurements taken by the vehicles at
times {t1, t2, · · · , tK}.

For simplicity, we choose here a quadratic measure for
control effort, and a weighted sum of the variances to
quantify forecast accuracy:

J = trace(TPF ) +
1
2

M∑
i=1

∫ tK

0

ui(t)T Quui(t) dt, (7)

where T is a diagonal weighting matrix that biases the mea-
sure of PF more heavily in certain “regions of interest” in the
domain Ω, and Qu is a positive definite weighting matrix.
Not that, since ui(t) affects the cost function nonlinearly,
J is in general non-convex; global optimization of this cost
function can thus not be guaranteed with a computationally
tractable algorithm. Thus, a locally minimizing solution is
sought via an iterative approach by initially assuming a
nominal control trajectory for each vehicle, then computing

a local gradient Oui(t)J . The following shows how such
gradient can be tractably computed using adjoint analysis.

Applying perturbations to an assumed set of control tra-
jectories causes a chain reaction that perturbs other variables;
the first-order perturbations of these variables are:

dqi(t)′

dt
= Fqi(t)′ + Gui(t)′, qi

0
′ = 0, (8a)

dP (t)′

dt
= AP (t)′ + P (t)′AT , P ′

0 = 0, (8b)

P+
k
′= P−

k
′−(P−

k
′HT

k +P−
k (H ′

k)T )LT
k−Lk(HkP−

k
′+H ′

kP−
k )

+Lk(H ′
kP−

k HT
k +HkP−

k
′HT

k +HkP−
k (H ′

k)T+R′
k)LT

k ,
(8c)

J ′ = trace(TP ′
F ) +

M∑
i=1

∫ tK

0

ui(t)T Quui(t)′ dt, (8d)

R′
k =

R1
k
′ 0

. . .
0 RM

k
′

 , H ′
k =

 H1
k
′

...
HM

k
′

 , (8e)

Ri
k
′ =

(
dRi

k

dqi
k

)T

qi
k
′, Hi

k
′ =

(
dHi

k

dqi
k

)T

qi
k
′, (8f)

where F and G are (2) linearized about qi(t) and ui(t)
respectively, and qi

0
′, P ′

0, and W ′ are zero because they are
not affected by perturbations in ui(t). Note that dRi

k

dqi
k

and
dHi

k

dqi
k

are rank-3 tensors that contract by the inner product
with qi

k
′ to yield matrices Ri

k
′ and Hi

k
′. The purpose of

the analysis below is to reëxpress (8d) in the form

J ′ =
M∑
i=1

∫ t−K

0

(
Oui(t)J

)T
ui(t)′ dt. (9)

Equation (9) is similar to (8d) except for the trace(TP ′
F )

term; the remainder of the analysis focuses on rewriting
trace(TP ′

F ) in this form.
We simplify the (8a) and (8b) description by introducing

linear operators L(P ′), M(q′)i, and B(u′)i:

L(P ′) ,
dP (t)′

dt
−AP (t)′ − P (t)′AT , (10a)

M(q′)i ,
dqi(t)′

dt
− Fqi(t)′, (10b)

B(u′)i , Gui ′, (10c)

so that L(P ′) = 0 by (8b) and M(q′)i = B(u′)i by (8a).
An adjoint variable S(t) ∈ Rn×n is defined over the time
window [t+K , tF ] and an adjoint identity based on a relevant
inner product is defined:

〈S,L(P ′)〉t+K ,tF
= 〈L∗(S), P ′〉t+K ,tF

+ a, (11a)

〈X, Y 〉t+K ,tF
,

∫ tF

t+K

trace(X(t)T Y (t)) dt. (11b)

Using integration by parts, it can be shown that

L∗(S) = −dS(t)
dt

−AT S(t)− S(t)A, (12a)

a = trace(ST
F P ′

F )− trace((S+
K)T P+

K
′). (12b)
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Taking L∗(S) = 0 and SF = T , (8d) is rewritten using
relationships established in (11) and (12) into

J ′ = trace((S+
K)T P+

K
′) +

M∑
i=1

∫ t−K

0

ui(t)T Quui(t)′ dt.

(13)
Note by setting L∗(S) = 0 and ST

F = T , this is equivalent
to defining a backward-in-time evolution equation for S(t)
such that dS(t)

dt = −AT S(t)−S(t)A with starting condition
ST

F = T . By the special structure of the S evolution equation
and SF , it is clear that S+

K is also symmetric in (13).

Substituting (8c), (8e), and (8f) into P+
K

′ in (13) and
leveraging the trace identity trace(AB) = trace(BA) =
trace(AT BT ), the P−

K
′ and qi

K
′ terms are gathered to the

right. Leveraging the block matrix structure of H ′
K and R′

K ,
(13) becomes

J ′ = trace((I −HT
KLT

K)S+
K(I − LKHK)P−

K
′)

+ trace(2P−
K (HT

KLT
K − I)S+

KLKH ′
K)

+ trace(LT
KS+

KLKR′
K) +

M∑
i=1

∫ t−K

0

ui(t)T Quui(t)′ dt,

= trace((I −HT
KLT

K)S+
K(I − LKHK)P−

K
′)

+
M∑
i=1

trace((2P−
K (HT

KLT
K−I)S+

KLK)i

(
dHi

K

dqi
K

)
)Tqi

K
′

+
M∑
i=1

trace((LT
KS+

KLK)ii

(
dRi

K

dqi
K

)
)T qi

K
′

+
M∑
i=1

∫ t−K

0

ui(t)T Quui(t)′ dt, (14)

where (LT
k S+

k Lk)ii denotes the (i, i) block of M × M
block matrix LT

k S+
k Lk and (2AP−

k AT(HT
k LT

k −I)S+
k Lk)i

denotes the i’th column block of 1 × M block matrix
2AP−

k AT(HT
k LT

k−I)S+
k Lk. Note the ()− superscript on qi

K
′

is dropped because the qi(t) trajectory is smooth.

If the same inner product and adjoint identity as in (11)
are defined, but now over the time window [t+K−1, t

−
K ], and

if in addition M adjoint vectors ri(t) ∈ Rn are defined over
the same time window with the appropriate adjoint identity

〈〈ri,M(q′)i〉〉t+K−1,t−K
= 〈〈M∗(r)i,qi ′〉〉t+K−1,t−K

+ bi,

(15a)

〈〈x,y〉〉t+K−1,t−K
,

∫ t−K

t+K−1

x(t)T y(t) dt, (15b)

M∗(r)i = −dri(t)
dt

− FT ri(t), (15c)

bi = (ri−
K )T qi

K
′ − (ri+

K−1)
T qi

K−1
′, (15d)

then by letting

L∗(S) = 0, M∗(r)i = 0, (16a)

S−K = (I −HT
KLT

K)S+
K(I − LKHK), (16b)

ri−
K = trace

[
(2P−

K (HT
KLT

K − I)S+
KLK)i

(
dHi

K

dqi
K

)]
+ trace

[
(LT

KS+
KLK)ii

(
dRi

K

dqi
K

)]
, (16c)

and substitute into (14), leveraging the adjoint identities (14)
is transformed to:

J ′ = trace((S+
K−1)

T P+
K−1

′)+
M∑
i=1

∫ t−K

0

ui(t)T Quui(t)′ dt

+
M∑
i=1

( ∫ t−K

t+K−1

ri(t)TB(u′)i dt + (ri+
K−1)

T qi
K−1

′
)
. (17)

Equation (17) bears a strong resemblance to (13), except
for the shifted time index on the first term and the additional
third and fourth terms. In general for a given measurement
interval [t+k−1, t

+
k ] where the initial J ′ equation is

J ′ = trace((S+
k )T P+

k
′) +

M∑
i=1

∫ t−K

0

ui(t)T Quui(t)′ dt

+
M∑
i=1

( ∫ t−K

t+k

ri(t)TB(u′)i dt + (ri+
k )T qi

k
′
)
, (18)

if the following is enforced:

S−k = (I −HT
k LT

k )S+
k (I − LkHk), (19a)

ri−
k = ri+

k + trace

[(
2P−

k (HT
k LT

k − I)S+
k Lk

)
i

(
dHi

k

dqi
k

)]
+ trace

[
(LT

k S+
k Lk)ii

(
dRi

k

dqi
k

)]
, ri+

K = 0, (19b)

S−k → S+
k−1 via

dS(t)
dt

= −AT S(t)− S(t)A, (19c)

ri−
k → ri+

k−1 via
dri(t)

dt
= −FT ri(t), (19d)

where → denotes propagation, then (18) is rewritten into

J ′ = trace((S+
k−1)

T P+
k−1

′) +
M∑
i=1

∫ t−K

0

ui(t)T Quui(t)′ dt

+
M∑
i=1

( ∫ t−K

t+k−1

ri(t)TB(u′)i dt + (ri+
k−1)

T qi
k−1

′
)
. (20)

Through the structure of (19a) and (19c), it is clear that in
fact the entire S(t) trajectory is symmetric. Also we see that
by defining the variables according to (19), the time index in
the J ′ equation is iteratively shifted toward t0. Eventually,
the J ′ transformation reaches time t0, where from earlier
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result P ′
0 = 0 and qi

0
′ = 0. Hence the final J ′ equation is

J ′ =
M∑
i=1

∫ t−K

0

ri(t)T B(u′)i︸ ︷︷ ︸
Gui(t)′

+ui(t)T Quui(t) ′ dt

=
M∑
i=1

∫ t−K

0

(GT ri(t) + Quui(t)︸ ︷︷ ︸
Oui(t)J

)T ui(t) ′ dt, (21)

which is in the necessary form to obtain the local gradient
information. This gradient information is ready to be used
by an iterative optimization method.

To recap, we started with (8d), which is not in the correct
form as in (9) to obtain the local gradient information.
Through defining the proper adjoint identities (11), (12), and
(15), leveraging (8c), (8e), (8f), and the trace identity, and
correctly setting L∗(S), S−k , M∗(r)i, and ri−

k in (19), (8d)
is transformed iteratively until the final form in (21). The
local gradient can be easily extract at this point to be used
by an iterative optimization methods.

III. THE ENSEMBLE KALMAN FILTER

In environmental flow systems, spatial discretization of
the relevant PDEs routinely requires O(105) or larger state
dimension for adequate-fidelity representation of the physics
of interest. In such large-scale systems, classical estimation
methods like the Kalman Filter and the Extended Kalman
Filter (EKF) are numerically intractable, due both to their
poor computational scaling with increasing state dimension
as well as their inability to represent nongaussian statistics.
The Ensemble Kalman Filter (EnKF, see [8] and [9]) ad-
dresses these challenges in an efficient stochastic manner by
propagating an ensemble of N perturbed candidate system
trajectories, inferring the principle directions of estimation
uncertainty from the ensemble distribution.

The KF propagates the estimation error covariance, P ,
and uses it to perform measurement updates. In contrast, the
EnKF measurement update is based on a sample covariance,
denoted Σ, obtained via an outer product of the ensemble
perturbations:

Σ =
(δX̂)(δX̂)T

N − 1
, δX̂ =

[
δx̂1 · · · δx̂N

]
, (22a)

δx̂j = x̂j − x̄, x̄ =
1
N

N∑
j=1

x̂j , (22b)

where x̂j is the j’th ensemble member state estimate. The
sample covariance Σ is then used instead of the full covari-
ance P to perform measurement updates on each ensemble
member independently:

x̂j+
k = x̂j−

k + Σ−
k HT

k (Hk Σ−
k HT

k + Rk)−1×
(yk −Hk x̂j−

k + vj
k), (23)

where vj
k ∼ N(0, Rk). The reason for additional vj

k pertur-
bation is to maintain statistical consistency between EnKF
and KF [10]. Because EnKF is a Monte-Carlo method, the

ensemble estimate and sample covariance converge to the KF
solution as N →∞ (see [11]).

In practice, due to computational constraints, the number
of ensemble members [typically, O(100)] is rarely even
comparable to the state dimension itself [typically, O(105)
or larger]. Due to this discrepancy, Σ is a low-rank, under-
resolved approximation of the covariance P ; generally, Σ
contains spurious correlation between pairs of states sepa-
rated over a large physical distances which, it may be argued
on physical grounds, should be small. Localization (see
[12]) is an ad-hoc method designed to suppress such non-
physical long-distance correlations. It is typically applied as
a weighting or “damping” function on the sample covariance

Σ =
ρ • (δX̂)(δX̂)T

N − 1
, (24)

where ρ weights the ith and jth state correlection based on
the physical distance between the two, and • denotes the
element-wise product. Typically ρ is chosen to diminish to
zero as this distance increases, and approaches unity as this
distance decreases. Applying ρ directly on elements of Σ is
not practical due to the size of Σ, thus approximations are
made such that (23) is rewritten as

x̂j+
k = x̂j−

k +ρs • (Σ−
k HT )(ρm • (Hk Σ−

k HT
k )+Rk)−1×

(yk −Hkx̂
j−
k + vj

k), (25)

where ρi,j
s applies weighting based on distance between the

ith state and the jth measurement, and ρi,j
m applies weighting

based on the distance between the ith and jth measurement.

IV. EXPERIMENTAL DESIGN AND RESULTS

The PDE system considered is the 2D Navier-Stokes
Equation (NSE) with additive low-frequency forcing coupled
with a passive scalar field [that is, a scalar field (modeling,
e.g., smoke density) advected by the velocity field, but which
itself does not affect the evolution of the velocities field].
There is source of the scalar near the center of the physical
domain. The governing equations are

∂x
∂t

= −x · Ox + νO2x +
1
ρ
Op + fd (26a)

∂φ

∂t
= −x · Oφ + κO2φ + fφ (26b)

hi
k(qi

k,xk) = Hi
k(qi

k)xk (26c)

with density ρ, kinematic viscosity ν, pressure p, and diffu-
sion constant κ. x is a velocity vector field containing the
horizontal and vertical velocities, and φ is the passive scalar
field simulating an environmental plume. The ith measure-
ment operator measures the local quantity of x and φ at
the ith sensor position contained in qi

k. Each sensor vehicle
is modeled with classic point-mass dynamics with damping,
where the point-mass horizontal and vertical accelerations
are controlled independently.

Numerical simulation of (26) uses the pseudo-spectral
code developed in [13] on a 64 × 64 uniform square grid.
In all numerical experiments the “truth” simulation uses an
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Fig. 2. Cartoon illustrating how DAO and EnKF interacts in time. During
each measurement the EnKF sends new the Σ to DAO (dashed up arrow)
to update the optimization problem. The optimization lasts 3 measurements
and the future vehicle waypoint sequences are sent to the vehicles (solid
down arrow).

identical model (with different initial conditions and random
forcing) running in parallel with the EnKF. The simulations
are done in a periodic domain nondimensionalized with
width L = 2. To simulate estimating a non-periodic domain,
the estimation is isolated to a subregion of width R = 1.35
centered in the domain. The targeting matrix T in (7) is
chosen in DAO to focus on the entire estimation subregion.
For flow computation stability, a relatively small marching
time-step (∆t = 0.005 time unit) is used, and measurements
are taken every τmeas = 0.15 time units. For simplicity, the
forecast time and the time of the last measurement are taken
to coincide (that is, TF = TK). The localization strategy for
ρs and ρm are both taken as

ρ = e−4d2
, (27)

where d is the distance between the quantity of interest.
In this experiment DAO optimizes the vehicle waypoints

subjected to vehicle dynamics over six measurement times,
thus the event horizon is TF = τmeas × 6 = 0.9. At
each measurement DAO receives the current estimate sample
covariance Σ from the EnKF and updates the optimization
problem. The optimization lasts 3 measurements, and at
the end the optimal control trajectory iterate (whether the
optimization has converged or not) is used to forecast future
optimal vehicle waypoints. The future six-vehicle-waypoints
sequences are sent to the vehicles, but only the first three are
used; the last three serve as “backup” should the vehicles
fail to receive the next set of waypoints (though this is not
necessary for the present idealized numerical simulation, it
could be useful in future physical realizations). The control
trajectories for the last three waypoints are used as part of
the initial control trajectories for the next optimization. Fig. 2
illustrates how DAO and EnKF interacts.

Because the DAO algorithm is formulated based on the
Kalman Filter, it doesn’t escape the fact that it requires the
full covariance matrix P propagation, which as mentioned
earlier, is computationally intractable. Rather than propagat-
ing P (t) using the fully model dynamics with (5), a simple
“growing” model

dP (t)
dt

= 0.1P (t) + 0.1P (t)T , (28)

is used instead. With an additional assumption that P
is diagonally dominant (effectively, that the spatial cross-

correlations are negligible), it can be shown the DAO algo-
rithm can be carried out entirely without approximations by
propagating and storing only the diagonals of P (t) and S(t),
which dramatically reduces the computational and storage
requirements. Both approximations are justified by the small
event horizon TF considered in the present simulation, where
numerical experiment data collected on (26) (not shown)
suggests the equations are essentially linear with little cross-
correlations between states within this event horizon.

To quantify the estimate quality, we consider the steady-
state, infinite-time averaged absolute error, defined by [14]
as the difference between the estimate and the truth squared,
integrated over the estimation subregion:

Errn(d̂, dtru) =
∫

Ω

( d̂− dtru )2 dΩ, (29)

where ()tru corresponding the “truth” values. Long-time
averages of this measure applied to both the velocity field
and the scalar are used to approximate the expected value,
E [Errn(d̂(t), dtru(t))] , 1/T

∫ T

0
Errn(d̂(t), d(t)) dt, at sta-

tistical steady-state.
Fig. 3 and Fig. 4 compare the time-averaged error within a

time interval using three different adaptive observation strate-
gies: sensors following a random walk, sensors distributed
uniformly in the estimation subregion, and the present DAO
strategy. As a baseline to compare against, when no mea-
surements are taken, the average estimation error as defined
in (29) for the flow velocity is 34.5, and 4.06 for the scalar.
Fig. 5 provides a typical example of the waypoints optimized
by DAO.

These results in Fig. 3 and Fig. 4 demonstrate that sig-
nificant improvements in the estimate can be accomplished
via path planning. The DAO algorithm is able to achieve
a 47% reduction for the flow and 42% reduction for the
scalar estimation error compare to the random walk scheme,
and 25% and 17% respectively compared against uniformly
distributed sensors. Further, these results also suggest that
deliberate sensor placement is more important than unor-
ganized movement, as demonstrated by the performance of
uniformly distributed sensors against the random walk.

V. CONCLUSIONS AND FUTURE WORK

This paper combines our new Dynamic Adaptive Observa-
tion (DAO) algorithm and the well-known Ensemble Kalman
Filter (EnKF) to estimate an environmental flow represented
with a passive scalar emanating from a source and driven
convectively in a 2D randomly-forced flow. Unlike existing
AO algorithms, the DAO algorithm rigorously incorporates
vehicle dynamics, and computes optimal vehicle waypoints
that (locally) minimizes the forecast uncertainty. Numerical
experiment demonstrates a significant reduction in the fore-
cast error over less deliberate sensor routing strategies.

Because DAO is formulated with the Kalman Filter, one
disadvantage is that propagation of the full covariance matrix
is required, which is not practical due to the problem size.
We side-stepped this problem in the numerical experiment
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Fig. 3. Time-averaged absolute error of the flow velocities within
a time interval, following three AO strategies: (1) sensors following a
random walk, average 13.4 (dot-dashed) (2) stationary sensors uniformly
distributed over the estimation subregion, average 9.5 (dashed), and (3)
sensor trajectories provided by DAO, average 7.1 (solid). The error increases
between measurements, and decreases at the EnKF measurement updates,
thus creating the “saw-tooth” shape in the error plot.
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Fig. 4. Time-averaged absolute error of the scalar within a time interval,
with the sensor motion as described in Fig. 3. Because the scalar evolution
is primarily driven by the flow velocities, the scalar estimate absolute error
dips slightly after each measurement update, due to the improved velocity
estimate. The average errors are 1.82 for random walk, 1.28 for uniformly
distributed stationary sensors, and 1.06 for DAO.

reported here by assuming a simplified model of the co-
variance evolution that reduces the necessary computations
significantly. For better performance, the underlying model
should instead be fully leveraged; hence we are working
toward adopting the EnKF into the DAO formulation in place
of the KF.

A new Hybrid variational / Ensemble Kalman Smoother
(HEnS) algorithm for state estimation has also recently been
proposed by our group [15]. Preliminary tests have show that
this new algorithm outperforms the EnKF in the presence of
substantial non-Gaussian uncertainties. Steps are being taken
to combine HEns with DAO in the near future.
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