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The first successful application of linear full-state feedback optimal control theory to consistently
relaminarize turbulent channel flow at Rel00 with full state information and gain scheduling is
reported. The actuation is zero-net mass-flux blowing and suction on the channel walls. Two key
issues central to the success of this strategy(ayeéhe choice of the mean-flow profile about which

the equations are linearized for the computation of the linear feedback gaindy)ahd choice of

an objective function which targets the control effort on the flow perturbations of interest. A range
of mean-flow profiles between the laminar and fully turbulent profiles and a weighted energy
measure which targets flow perturbations in the near-wall region were found to provide effective
feedback gains. A gain-scheduling strategy to tune the feedback gains to the nonstationary
mean-flow profile is introduced, resulting in consistent relaminarization of the turbulent flow in all
realizations tested. @003 American Institute of Physic§DOI: 10.1063/1.1608939

Leveraging the linearized equations of fluid motion in anextended for application to three-dimensional flows by aug-
attempt to develop effective flow control algorithms is amenting anad hocscheme in the third dimensidf Applied
fairly recent strategy which has rapidly become quite poputo a turbulent channel flow at Re100, this scheme resulted
lar. One of the earliest studies of this typevaluated the in a maximum drag reduction of 17%.
superposition control concept using the Orr—Sommerfeld Three-dimensional perturbations have also been consid-
equations with periodic blowing and suction as the boundarered directly*! using both optimal F,) and robust H..)
condition. Another early studyused heating and cooling at control strategies for both sub- and supercritical Reynolds
the wall coordinated with a simple proportional control numbers at isolated wavenumber pairs in a linearized chan-
scheme based on measurements of wall shear to modify theel flow. The key property making this work is the complete
viscosity of the flow in order to suppress instabilities. Thedecoupling of the control problem at different wavenumber
linearized equations have also been dstdevaluate the pairs when the Orr—Sommerfeld/Squire equations are used
strategy now commonly known as “opposition contrdl.” and all variables with spatial variation are Fourier trans-
The behavior of a so-called “vorticity flux” scheme has beenformed in the streamwise and spanwise directions. It was
quantified by computation of neutral curves for the con- suggestett that the optimal control for the full physical sys-
trolled linear system. tem could be obtained through an inverse Fourier transform

Classical control theory has been applied to two-of optimal controllers computed via such a technique for a
dimensional perturbations in a laminar channel flow using darge array of wavenumber pairs. It was theoretically
streamfunction formulation of the Orr—Sommerfeld predicted? that such controllers, computed for a spatially
equation® Blowing and suction actuation was computed us-invariant distributed system, should be spatially localized
ing feedback of wall shear. Using a full-state-feedback intewith exponentially decaying tails. Well-behaved localized
gral compensator the flow could be stabilized significantly.control feedback kernels of this sort were first obtained for a
Modern control theory has also been used to compute optiNavier—Stokes systethusing a slightly modified version of
mal (H,) controllers using this streamfunction formulatibn. the problem formulation studied previouslyThe perfor-
The same formulation has also been used to develomance of these linear controllers, using both full information
reduced-order robustLTR) controllers for the multi- and wall information only, has been thoroughly quantified in
wavenumber castA similar approach was followédo de-  terms of their ability to prevent chanel-flow transitith.
velop robust §..) controllers, accounting for effects of lo- Prior to the present work, nonlinear control strategies, in
calized actuation. These two-dimensional controllers may ban expensive model predictive control framework, have been
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uniquely successful in relaminarizing fully developed The inhomogeneous paki is taken to satisfy the nonzero
channel-flow turbulence using blowing and suction as théoundary conditions and a numerically convenient equation
method of actuatiof® In this work, a receding-horizon opti- on the interior of the domain; in the present case, we con-
mization strategy is used, which means that a large timestruct the so-called “lifting” functionX; to satisfy the simple
interval is divided into smaller subintervals, and then theequationN%X;=0 on the interior at any instant. Assembling
control is optimized over these subintervals successively ughe controls(i.e., the values ob at the upper and lower
ing an adjoint-based algorithm. It was f-o&ﬁ(ﬂh.at the per-  walls) into a control vectore, this system may easily be
formance of the .resultlng control can differ W|Qely depend-gq)ved for arbitraryfﬁ and written as

ing on the choice of flow properties penalized by the

objective function, as also indicated by other studfes. K=2. 4
terminal measure of turbulent kinetic energy on each sub-

. . . - The partX,, therefore satisfies homogeneous boundary con-
interval was found to be the most suitable choice to obtain,. . . . . o

o . . . ditions, and the interior equation governiRgmay be found
relaminarization. The importance of choosing the right quan-

tity of the flow to target in the optimization of a controller for by substitution of(3) into (2). Noting (4), the result may be

a fluid flow is well known; direct numerical simulatioHs written

show that the linear coupling terfd in (2)] is crucial for the & N NZ|[%, —71

maintenance of the turbulence near the wall. It has been o =[0 0 d) +[ I } ¢ . 5
suggestel! that an objective function targeting the effect of e ~ ©
this coupling term could result in an effective controller. In- f A s 5 G

spired by this work, an energy weighting of the forfity) . :
—1+U’(y)? was introduced in the objective function in the We have arrived at the desired state-space form. Note that

present worksee(6)]. the control( is thetime derivativeof the normal velocity at

We now give a very brief summary of the control ap- the upper and lower walls, the staiteis the control¢ ap-
proach used in the present work, referring the reader to opended to the homogeneous vedigr and the state-space
earlier papéf* for many of the details. The Orr—Sommerfeld/ "ePresentation is decoupled in Fourier space at each wave-
Squire equations are used as a model of the flow systenﬁ‘.“mber paw{kx,kz}. Note also that, for the convenient lift-
These equations are derived from the Fourier transfonm N function we have used here, we may t2k&=0 in the
thex andz directions of the Navier—Stokes equation linear- above expression.

ized about a mean-flow profilé(y), and may be written at .The magnitude of the flow perturbation.ifs measured as a
each wavenumber pajk, ,k,} as Welgh_ted mteg_r_al of t_he square of the velocities over the flow
domain. Rewriting this measure #-® form and introduc-
Ai‘/={— ikyUA+ik,U"+A(A/Re)} D, ing a weighting functiorf(y) gives
A . Mo~ . N @) ~ 1 1 |2
wz{—IkZU }V+{—IkXU+A/Re}a), Esz lf(y)(k2|a|2+ W +|&)|2)dy=>??Qf<f, (6)

where A=4?/gy?—ki—kZ. The Reynolds number Re s s o N _
=u,h/v parametrizes the problem, wheheis the half-width ~ Wherek“=k;+k; . Noting the decompositio8), this mea-
of the channely, is the mean friction velocity of the uncon- Sure may be written in terms of the state variablas

troller flow, andv is the kinematic viscosity of the fluid. A o) 0z
Chebyshev collocation technique is used for the discretiza- E=g* . . KEX* OX. (7
tion in y at each wavenumber pdjk,,k,}. Boundary con- 27Q Z2°QZ

ditions are handled in the construction of the differentiation e now seek the contrdal which, with limited control

matrices in such a way that spurious eigenvalues are elimiffort, minimizes the weighted flow perturbation enefgy
nated. Invocation of the homogeneous boundary conditiongp te(0). This is a standard optimal control problem.
on dv/dy (resulting from the no—slip §0nfjiti0?=VV=_0 t’jlt Defining the objective functiond= [ (X* QX+ €20* 0)dt,
the wall and the continuity equatioik,l+dv/dy+ik, W  the controlt which minimizesJ is given by(i=K&, where
=0) allows inversion of the Laplacian on the left-hand sidek = — (1/¢%)B*X and X is the positive-definite solution to
of (1) and expression ofl) in matrix form: the Riccati equationXA+A* X— (1/¢2) XBB*X+ Q=0.

. £ oolls Note that¢? is used as an adjustable parameter which scales
v v the penalty on the control effort in the cost function, and that
o e sllef @

g — this penalty term is a function df?)|2 in the present formu-

i N & lation. Due to the continuity of’, excursions ofl¢|? are

Xf Xf
. L . penalized naturally in th&* Ox term of the cost function; no
where boldface denotes the vectors obtained via d|scret|zz§)- y Q

g ~ 2 .
tion. Control is applied via blowing and suction at the chan—"’ldd't'on"’II peknalty on¢|* was found to be necessary in the
nel walls. A lifting technique is used to formulate the control present work.

equations in state-space form. To accomplish this, the flow _The optimal control problem desc_ribed here has been
perturbation is decomposed such that derived f_or each wavenumb_er pz{zkx,k_z} independently. By _
assembling the corresponding physical space controller via

X=X+ Xy, . (3 an inverse Fourier transform, we may derive feedback con-
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FIG. 1. Mean-velocity profiles used to compute the control kernels used in
the gain-scheduled control strategy. The profiles were obtained by initializ-
ing a flow with simply the mean turbulent flow profilé(y), then relaxing —_
this mean profile back to the steady-state laminar profile using a nonlinear 8
simulation code. N
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volution kernels that can be used to compute the control £
input in the physical domain. The convolution integral by %’)
which the control is computed in physical space is given by a
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where the feedback kernelts .., andk, ., are the inverse 10°

Fourier transform of the feedback gains mand o, respec-
tively, which are computed on a large array of wavenumber
pairs. The convolution kernels obtained for the flow consid-
ered here are spatially localized and similar to those reported
earlier by our group®*8

During the relaminarization of a turbulent flow, there is a
significant change in the mean-flow profile. In order to ap-
proximate the dynamics of the turbulent flow system with a
linear equation which models the system dynamics as accu-
rately as possible, feedback kernels are computed based on
the Orr—Sommerfeld/Squire equations linearized about a \
range of representative mean-flow profiles, including the " RN .
laminar profile, the fully turbulent mean-flow profile, and 0 2000 4000 & 6000 8000 10000
several profiles in between, as depicted in Fig. 1. These con- © tt
trol kernels are then used according to a so-called “gain¥IG. 2. Evolution of initially fully developed turbulence at Rel00 when
scheduled” scheme that implements linear control feedbacR 92in-scheduled linear controlier computed usifig0.1 and f(y)=1

+U’(y)? in (6) is applied to different initial conditions. The control is
based on those kernels computed for the mean-flow pmf”ﬁjrned on att=0 in all cases. Top: energy of flow perturbation. Middle:

that most closely corresponds an L? sensgto a sliding  normalized total drag. Bottom: mean-square value of the corfrdilote
time averageintegrated over a period of 1 viscous time Qinit that application of the gain-scheduled linear control feedback causes the
of the current mean-flow profile in the simulation. This idea fully turbulent three-dimensional flow to relaminarize in all flow realizations
was first presented as an effective solution for the preserﬁmed'

application at the APS-DFD meeting in November 2000, by

Hogberg.

A benchmark problem has been set up for testing théhe tests of controller effectiveness; the results for each ini-
effectiveness of the control algorithm in a constant-mass flutial condition are both qualitatively and quantitatively simi-
channel flow in a 4xX2X47/3 box with 64<82Xx 64 grid lar, indicating the generality of the control effectiveness. One
points. Several independent realizations of fully developedase at a higher resolution in the normal direction using 128
turbulence at Re=100 are used to initialize the flow state in points was also tested to verify the results. The code uses a
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Fourier discretization irx and z and second-order-accurate The improved controller performance encountered when
finite differences iny. The solver is implicit on all terms using a weighted energy measure in the objective function
involving wall-normal derivatives to allow for strong blow- suggests that there might be better measures of the flow per-
ing and suction without affecting the CFL restriction on theturbations for model-based control strategies to focus on than
time step. The same code was used previotisiyhere the just the perturbation energy.
same flow was relaminarized using an adjoint-based optimi- The importance of linear mechanisms in transition and
zation technique. The computation of the feedback convoluturbulence has been emphasized by many authors. The
tion integrals was implemented both in physical space and ipresent work indicates that the information contained in the
Fourier space. The two methods are equivalent and result iinearized equations is sufficient, at this Reynolds number, to
identical control signals, validating the correctness of thedesign linear controllers that consistently relaminarize near-
implementation. For the sake of computational efficiency inwall turbulence with actuation at the wall. For practical
the direct numerical simulation, the Fourier implementationimplementation of this flow control scheme, there is a need
was used in the simulations presented here. for a state estimator for the mean and fluctuating components
Five different simulations have been performed in orderof the flow. Motivated by the success of linear state feedback
to test the efficiency of the control scheme. In all cases thén the present full-information control problem, extended
turbulent flow has relaminarized, and perturbation energyalman filters implementing linear measurement feedback
and drag have been significantly reduced. Figure 2 shows thato the corresponding estimation problem are currently be-
time history of the perturbation energy, normalized drag, andng explored for this purpose, and will be reported elsewhere.
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