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State estimation in wall-bounded flow systems.
Part 3. The ensemble Kalman filter

C. H. COLBURN1†, J. B. CESSNA2 AND T. R. BEWLEY1

1Department of Mechanical Engineering, University of California, San Diego
La Jolla, CA 92093, USA

2Numerica Corporation, 4850 Hahns Peak Drive, Suite 200, Loveland, CO 80538, USA

(Received 16 September 2010; revised 1 March 2011; accepted 11 May 2011)

State estimation of turbulent near-wall flows based on wall measurements is one of
the key pacing items in model-based flow control, with low-Re channel flow providing
the canonical testbed. Model-based control formulations in such settings are often
separated into two subproblems: estimation of the near-wall flow state via skin friction
and pressure measurements at the wall, and (based on this estimate) control of the
near-wall flow field fluctuations via actuation of the fluid velocity at the wall. In our
experience, the turbulent state estimation sub-problem has consistently proven to be
the more difficult of the two. Though many estimation strategies have been tested on
this problem (by our group and others), none have accurately captured the turbulent
flow state at the outer boundary of the buffer layer (5 � y+ � 30), which is deemed
to be an important milestone, as this is the approximate range of the characteristic
near-wall turbulent structures, the accurate estimation of which is important for
the control problem. Leveraging the ensemble Kalman filter (an effective variant of
the Kalman filter which scales well to high-dimensional systems), the present paper
achieves at least an order of magnitude improvement (in the near-wall region) over
the best results available in the published literature on the estimation of low-Reynolds
number turbulent channel flow based on wall information alone.
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1. Introduction
In the past, estimation of chaotic fluid systems was motivated mostly by the need

for accurate weather forecasts. Today, the prospects of potential implementation of
real-time feedback control in manufacturing systems, or perhaps even aerodynamics
systems, provide new motivation to study this fundamental problem. Bewley & Liu
(1998), Bewley (2001) and Högberg, Bewley & Henningson (2003) developed optimal
feedback kernels for the control of the linearized Navier–Stokes equation in a channel.
The dependence of these feedback control kernels on the near-wall region, where the
characteristic near-wall turbulent structures are located, emphasizes the importance
of accurate state estimates in this region if effective feedback control is the ultimate
aim.

State estimation is a problem that has been considered at length by researchers
in many distinct communities. The ‘controls’ and ‘dynamic systems’ communities
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have focused primarily, but not exclusively, on problems which (a) have numerically
tractable solutions to the corresponding Riccati equations (Zhou, Doyle & Glover
1996), linear matrix inequalities (Scherer, Gahinet & Chilali 2002; Boyd et al. 1994) or
dynamic programs (Bertsekas et al. 2001) (all three of these methods usually requiring
a sufficiently low-state dimension or problems that can effectively be reduced to such
via standard model reduction techniques) and (b) are characterized by uncertainties in
the initial state, state disturbances and measurement noise that are well approximated
as Gaussian. In most cases, these assumptions are not valid in estimation problems
related to turbulent flows.

The weather forecasting community, on the other hand, has focused on estimation
(a.k.a. ‘data assimilation’) strategies that are numerically tractable for high-
dimensional discretizations of PDE systems. The two primary classes of data
assimilation strategies which have been developed in this community and are available
today for multi-scale uncertain systems are the ensemble Kalman filter (EnKF; see,
Evensen 2003) and space/time variational (4DVar; see, Bouttier & Courtier 1999)
methods.

The EnKF methods, which come in a few distinct variations, are particularly
well suited for nonlinear multi-scale systems with substantial uncertainties. Even for
some low-dimensional problems, the EnKF methods have been shown to provide
significantly improved state estimates in certain nonlinear problems for which
the more traditional extended Kalman filter (EKF) breaks down. The statistics of the
estimation error in the EnKF are not propagated via a covariance matrix but are
instead implicitly represented via the distribution of several perturbed trajectories
(‘ensemble members’), which themselves are propagated with the full nonlinear system
model. On many problems, in practice, the collection of these ensemble members (itself
called the ‘ensemble’) accurately captures the dominant directions of uncertainty of
the estimation error (in phase space) even when a relatively small number of ensemble
members are used. This is the key feature that lends the EnKF method its remarkable
numerical tractability in high-dimensional problems.

The 4DVar methods propagate state and sensitivity (‘adjoint’) simulations back
and forth across an optimization window of interest. An optimization is performed
based on these iterative marches to minimize a cost function balancing: (a) a term
accounting for the misfit of the estimate with the measurements over the optimization
window, with (b) a ‘background’ term accounting for the ‘old’ estimate (that is,
based on the measurements and statistics obtained prior to the present optimization
window). Though such a retrospective analysis is certainly beneficial in certain ways
in the estimation of nonlinear systems, 4DVar methods are not as natural as EnKF
methods for representing the principal directions of uncertainty in the estimate, which
is a critical ingredient of any effective state estimation strategy.

1.1. Related background on state estimation

Estimation, in general, involves the determination of a probability distribution. This
probability distribution describes the likelihood that any particular point in phase
space accurately represents the truth state. That is, without knowing the actual state
of a system, estimation strategies attempt to represent the probability of any given
state using only a time history of noisy observations and an approximate dynamic
model of the system of interest. Given this statistical distribution, estimates can
be inferred about the ‘most likely’ state of the system, and how much confidence
should be placed in that estimate. Unfortunately, in this most general form, the
estimation problem is intractable for most systems. However, given certain justifiable
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assumptions about the nature of the model and its associated disturbances and
uncertainties, simplifications can be applied with regards to how the probability
distributions are modelled. In linear systems with Gaussian uncertainty of the initial
state, Gaussian state disturbances and Gaussian measurement noise, it can be shown
that the probability distribution of the optimal estimate is itself Gaussian (see, e.g.
Anderson & Moore 1979). Mathematically, for any linear system

x
k
= F

k−1
x

k−1
+ w

k−1
w ∼ N (0, Q) (1.1)

y
k
= H x

k
+ v

k
v ∼ N (0, R), (1.2)

the entire distribution of the estimate in phase space can be represented exactly by
its mean x̄ = E[x] and its second moment about the mean (that is, its covariance) Σ

where

Σ = E[ (x − x̄)(x − x̄)H ]. (1.3)

In this paradigm, the notation x ∼ N (x̄, Σ) denotes explicitly that the random variable
x has a normal (Gaussian) distribution about its mean and covariance. This is
the essential piece of theory that leads to the traditional Kalman filter (KF), first
introduced by Kalman (1960) and Kalman & Bucy (1961).

Sequential data assimilation methods (e.g. the KF) provide a method to propagate
x̂ and P (that is, estimates of x̄ and Σ , respectively) forward in time, making the
appropriate updates to both upon the receipt of each new measurement. It is useful to
think of these quantities, at any given time tk , as being conditioned on a subset of the
available measurements. The notation x̂k|j represents the highest likelihood estimate
at time tk given measurements up to and including time tj . Similarly, P

k|j represents
the covariance corresponding to this estimate. In particular, x̂

k|k−1
and P

k|k−1
are often

called the prediction estimate and the prediction covariance, whereas x̂
k|k and P

k|k are
often called the current estimate and the current covariance. The linear, discrete-time
evolution equations for the KF are

x̂
k|k−1

= F
k−1

x̂
k−1|k−1

, (1.4)

P
k|k−1

= F
k−1

P
k−1|k−1

FH

k−1
+ Q

k−1
, (1.5)

x̂
k|k = x̂

k|k−1
+ P

k|k−1
HH (HP

k|k−1
HH + R)−1( yk − Hx̂

k|k−1
), (1.6)

P
k|k = P

k|k−1
− P

k|k−1
HH (HP

k|k−1
HH + R)−1 HP

k|k−1
, (1.7)

where (1.4) and (1.5) propagate the state and covariance, respectively, between
measurement updates, and (1.6) and (1.7) update the state and covariance, respectively,
at measurement times. Note that x̂

k|k+K
, for some K > 0, is often called a smoothed

estimate and may be obtained in the sequential setting by a Kalman smoother (see,
Rauch, Tung & Striebel 1965; Anderson & Moore 1979).

For nonlinear systems with relatively small uncertainties, a common variation on
the KF known as the EKF has been developed in which the mean and covariance are
propagated about a linearized trajectory of the full system. Essentially, if a Taylor-
series expansion for the nonlinear evolution of the covariance is considered and
all terms higher than quadratic are dropped, what is left is the differential Riccati
equation associated with the EKF covariance propagation. Though this approach
gives acceptable estimation performance for nonlinear systems when uncertainties are
small as compared with the fluctuations of the state itself, EKF estimators often
diverge when uncertainties are more substantial and other techniques are needed.
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Figure 1. Non-Gaussian uncertainty propagation in the Lorenz system (see Lorenz 1963).
The black point in the centre shows a typical point located in a sensitive area of this chaotic
system’s attractor in phase space, representing a current estimate of the state. The thick black
line represents the evolution in time of the trajectory from this estimate. If the uncertainty of
the estimate is modelled as a very small cloud of points, centred at the original estimate with
an initially Gaussian distribution, then the additional grey lines show the evolution of each
of these perturbed points in time. A Gaussian model of the resulting distribution of points is,
clearly, completely invalid.

At its core, the linear thinking associated with the uncertainty propagation in the KF
and EKF breaks down in chaotic systems. Chaotic systems are characterized by stable
manifolds or ‘attractors’ in n-dimensional phase space. Such attractors are fractional-
dimensional subsets (a.k.a. ‘fractal’ subsets) of the entire phase space. Trajectories
of chaotic systems are stable with respect to the attractor in the sense that initial
conditions off the attractor converge exponentially to the attractor, and trajectories
on the attractor remain on the attractor. On the attractor, however, trajectories of
chaotic systems are characterized by an exponential divergence of slightly perturbed
trajectories. That is, two points infinitesimally close on the attractor at one time will
diverge exponentially from one another as the system evolves until they are effectively
uncorrelated.

Just as individual trajectories diverge along the attractor, so does the uncertainty
associated with them. This uncertainty can diverge in a highly non-Gaussian fashion
when such uncertainties are not infinitesimal (see figure 1). Estimation techniques that
attempt to propagate probability distributions under linear, Gaussian assumptions
fail to capture the true uncertainty of the estimate in such settings, and thus
improved estimation techniques are required. In this case, when estimating an ordinary
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differential equation (ODE) with n states, the probability density function (PDF) of
the estimate in phase space must be discretized and propagated for accurate results.
This converts the straightforward propagation of statistics in the KF problem (with
two coupled ODEs, of order n and n2) into a much more difficult PDE, of dimension
n, governing the evolution of the PDF itself; this PDE is known as the Fokker–Plank
equation (see, e.g. Jazwinski 1970, p. 164). This PDE may be approximated and
evolved with a Lagrangian method, referred to in this setting as a particle filter (PF;
see Arulampalam et al. 2002), or with a grid-based method, which may be made
tractable by exploiting the sparsity of the PDF in phase space (see, Bewley & Sharma
2009); both approaches are numerically tractable only for extremely small values of
n [i.e. n � 5].

1.2. Prior work on the estimation of turbulent channel flow

In high-dimensional estimation problems [e.g. n � O(106)], Bayesian methods, based
on propagating the full Fokker–Plank PDE, such as the PF method, are completely
out of the question. The KF and EKF approaches are also infeasible, unless further
decoupling or approximation is applied, due to their reliance on the propagation of
the covariance (of order n2) of the PDF of the estimate.

Exploiting a spectral decomposition to decouple the associated equations, Högberg
et al. (2003) solved the full KF problem for the state estimation of near-wall flows.
They did this by solving the (decoupled) estimation Riccati equations for the individual
Fourier modes of the linearized system, which makes these equations tractable, then
inverse-transforming the result back to physical space to obtain implementable
feedback convolution kernels associated with the estimation problem. Using an
improved problem formulation, Hœpffner et al. (2005) found effective kernels for the
state estimation problem in transitional channel flow (that is, for small perturbations
from the laminar state) that converged properly upon grid refinement. Chevalier
et al. (2006) then attempted to develop a nonlinear extension of this work in order
to apply it effectively to a fully developed turbulent flow using an EKF. This work
meticulously calculated a numerical model of the statistics of the nonlinear terms of
a fully developed channel flow, then used these statistics as the covariance of the state
disturbances when computing the estimator feedback gains via the (linear) Kalman
formulation.

Alternative methods have attempted the use of a Wiener filter (Martinelli 2009)
and 4DVar (Bewley & Protas (2004), a vector-based variant of the Kalman smoother
reviewed) to estimate Reτ = 100 and Reτ =180 flows, respectively. In Bewley & Protas
(2004) the authors also examined the direct extrapolation of wall skin friction and
pressure measurements of a turbulent flow into the flow field via Taylor series analysis;
unfortunately, it was found that the domain of convergence was much smaller than
20 viscous units. Chandrasekhar’s method has also been proposed for reducing the
dimension of the covariance propagation equations in the KF/EKF (see, Kailath
1973). This approach involves the propagation of a reduced-order factored form
of the time derivative of the covariance matrix, as well as the propagation of the
feedback gain matrix itself, rather than the (numerically intractable) propagation of
the full covariance matrix. This approach is promising for problems of this class and
has yet to be tried for the estimation of near-wall turbulence.

The groundwork described in the previous two paragraphs, upon which the present
paper is based, is reviewed further, and put into a broader context, in Kim & Bewley
(2007). The broad range of existing studies on this canonical problem provides a
benchmark against which new approaches may be compared. The present paper
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applies the EnKF to estimate a Reτ =100 turbulent flow based on wall skin friction
and wall pressure measurements alone. The remainder of this paper summarizes
briefly the EnKF and the principal heuristics, localization and covariance inflation,
required in its application to large-scale systems. The results, presented in § 3, might
be considered the first ‘successful’ estimation of this difficult benchmark problem.

2. The ensemble Kalman filter
The EnKF, first proposed by Evensen (1994), is a modern stochastic alternative to

Chandrasekhar’s method, described above, for state estimation in high dimensional
systems and is reviewed in depth in Evensen (2003, 2009a,b). Simply stated, in
standard implementations of the EnKF, a sample covariance matrix replaces the
forecast of the covariance matrix in (1.6). Even though only second-order statistics
of the distribution are typically used at each measurement update in the EnKF
approach, the full nonlinear dynamics of the system are used to propagate each
candidate realization between measurement updates.

We now review briefly the formulation of the standard EnKF, using a continuous-
time representation of the system state x(t) and measurements yk = y(tk) available at
discrete times tk ,

∂x(t)

∂t
= f (x(t), u(t), w(t)), (2.1)

yk = h(xk) + vk. (2.2)

The system dynamics f (·) in this formulation may be nonlinear and forced by
some known function u(t), and are also assumed to be corrupted by random ‘state
disturbances’ w(t) with known statistics. Similarly, the measurement operator h(·)
may be nonlinear and is assumed to be corrupted by additive white ‘measurement
noise’ vk with covariance Rk .

Recall from the Introduction that the EKF propagates the full covariance matrix
and uses it to perform measurement updates according to Bayes’ rule, assuming a
Gaussian PDF. The EnKF is, in a sense, quite similar, but builds an estimate P e of
the covariance matrix P based on an outer product matrix quantifying the deviation
of the ensemble members from their mean,

P e
k|k−1 =

(δ X̂k|k−1)(δ X̂k|k−1)
H

N − 1
, (2.3a)

δ X̂k|k−1 =
[
δ x̂1

k|k−1 δ x̂2
k|k−1 . . . δ x̂N

k|k−1

]
, (2.3b)

δ x̂j

k|k−1 = x̂j

k|k−1 − x̂k|k−1, (2.3c)

x̂k|k−1 =
1

N

∑
j

x̂j

k|k−1. (2.3d )

Using this ‘sample’ (that is, approximate) covariance matrix P e, a standard KF
measurement update may be performed,

x̂j

k|k = x̂j

k|k−1 + P e
k|k−1 HH

[
HP e

k|k−1 HH + Rk

]−1 (
yj

k − H x̂j

k|k−1

)
, (2.4)

where x̂j

k|k−1 denotes the j th ensemble member at time step k based on measurements

up to yk−1, P e
k|k−1 denotes the sample covariance matrix, as given in (2.3a), based on

the collection of ensemble members, yj
k denotes a discrete-time random vector with
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statistical distribution N( yk, R) and H denotes a linearization of the operator h(·)
about the mean state estimate x̂k|k−1. For more information on the standard EnKF
measurement update and its properties, the reader is referred to Evensen (2003).

It is important to differentiate between the PF and the EnKF, since they are perhaps
easily confused. Although both estimation methods use the governing equations
to propagate sets of perturbed realizations through phase space, the measurement
update in each method is fundamentally different. The PF uses a weighted linear
combination of these perturbed candidate realizations to approximate the PDF of
the estimate, with the weights being adjusted each time a measurement is taken
via Bayes’ rule. In contrast, the EnKF effectively uses identical weights on each
realization, instead shifting the realizations themselves, according to a Kalman-like
update formula, whenever measurements are taken.

In the computationally efficient implementation of the EnKF, the outer product
formula for the sample covariance matrix (2.3a) is kept in its factored form when
calculating the update (2.4) (or the modified form of this update, given below) in
order to retain the numerical tractability of the result. That is, P e is represented as
the product of two matrices of order n×N and N ×n, bypassing the full computation
of the n × n matrix P e, which is important because, in the implementation, N � n.
We thus rewrite (2.4) as

x̂j

k|k = x̂j

k|k−1 + αδ X̂k|k−1 δŶ
H

k|k−1

[
αδŶ k|k−1 δŶ

H

k|k−1 + Rk

]−1 (
yj

k − H x̂j

k|k−1

)
, (2.5)

where δŶ k|k−1 = H δ X̂k|k−1 and α = 1/(N − 1).
Butala et al. (2008) established that the EnKF, when formulated correctly for

systems with linear dynamics, asymptotically converges to the Kalman result as the
number of ensemble members becomes sufficiently large. An abbreviated proof is
provided below for convenience. Note in particular that the yj

k are perturbed in
a statistically consistent fashion so that the covariance term K RKH is properly
recovered below in (2.14).

Theorem 2.1. (Equivalence of the EnKF to KF) In the limit of an infinite number of
ensemble members (i.e. N → ∞), the estimated ensemble mean and covariance converge
to the equivalent KF equations (1.6) and (1.7), respectively, when using the EnKF update
(2.4).

Proof. Consider the rewritten EnKF update (2.4) as the unique solution for the
random variable x̂j

k|k conditioned on the random variables x̂j

k|k−1 and yj
k ,

x̂j

k|k = x̂j

k|k−1 + K e
(

yj
k − H x̂j

k|k−1

)
, (2.6)

K e = P e
k|k−1 HH

[
HP e

k|k−1 HH + Rk

]−1
. (2.7)

After recalling the definition of the covariance matrix

Pk|k−1 = lim
N→∞

1

N − 1

N∑
j=1

(
x̂j

k|k−1 − x̂k|k−1

)(
x̂j

k|k−1 − x̂k|k−1

)H
(2.8)

= lim
N→∞

P e
k|k−1, (2.9)

as discussed in Butala et al., the EnKF gain matrix K e converges to the Kalman gain
matrix K as n → ∞ by Slutsky’s theorem (Slutsky 1925; for explanation, see Gut
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2005, Theorem 11.4, p. 249). Thus, the expected value of (2.6) can be rewritten as

x̂k|k = lim
N→∞

1

N

N∑
j=1

x̂j

k|k (2.10)

= lim
N→∞

1

N

N∑
j=1

x̂j

k|k−1 + K
[

1

N

N∑
j=1

yj
k − H

1

N

N∑
j=1

x̂j

k|k−1

]
(2.11)

= x̂k|k−1 + K ( yk − H x̂k|k−1), (2.12)

which is identical to the KF state update (1.6).
By performing an equivalent analysis for the covariance of the random variable

x̂j

k|k , the covariance update equation is recovered similarly

Pk|k = lim
N→∞

1

N − 1

N∑
j=1

(
x̂j

k|k − x̂k|k
)(

x̂j

k|k − x̂k|k
)H

(2.13)

= (I − KH)Pk|k−1(I − KH)H + K RKH + Φ + ΦH , (2.14)

where

Φ = lim
N→∞

1

N − 1

N∑
j=1

[
(I − KH)

(
x̂j

k|k−1 − x̂k|k−1

) (
yj

k − yk

)H
KH

]
= 0, (2.15)

which implies that (2.14) and (1.7) are equivalent and the proof is complete.

Although this theoretical result justifies applying the EnKF to many problems, it
does not provide practical guidelines for choosing ensemble size for more general
applications, which is necessary during implementation. For linear problems of very
high dimension (n � O(106)) Furrer & Bengtsson (2007) show that convergence of
the trace of the covariance matrix is possible when the number of ensemble members
scales like the square of the order of the state (i.e. N ∼ O(n2)). Furrer & Bengtsson
also show that there can sometimes be considerable bias in the estimator even when
the number of ensemble members is of the same order as the order of the state
dimension (i.e. N ∼ O(n), also discussed in Evensen 2003, 2009a), a much less strict
requirement.

Based on this analysis alone, the requirements for convergence, which scale as
poorly as the storage requirements for the KF and EKF, restrict applications of the
EnKF to low-dimensional systems. As a result, two heuristics must be implemented
in practice to reduce the negative side effects associated with a reduced ensemble
size: localization and covariance inflation. As mentioned in the Introduction, it is often
found in practice that when these two heuristics are used with an ensemble-based
approach, the dominant directions of uncertainty of the estimation error (in phase
space) are captured accurately even when a relatively small number of ensemble
members is used.

2.1. Localization

Localization is an artificial distance-based suppression of the off-diagonal components
of the sample covariance matrix P e

k|k−1 as represented by (2.3a). It was first proposed

by Houtekamer & Mitchell (2001) and is an essential ingredient to the success of the
EnKF in practice. It is introduced to eliminate spurious correlations in the covariance
matrix that arise from the fact that it is usually grossly under-sampled (that is,
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N � n). Note in (2.3a) that the off-diagonal components of the covariance matrix
P e

k|k−1 are obtained by averaging the product of a flow field perturbation at one

point in the physical domain with a flow field perturbation at another point in the
physical domain. If these two points are separated by a large distance, it may be
argued on physical grounds that this averaged product should be small; localization
thus imposes this decay of correlation with distance, even if the system is so grossly
under-sampled that (2.3a) does not capture this decay (which is usually the case).

The sample covariance matrix P e
k|k−1 in (2.4) may thus be replaced by

P e
k|k−1 =

ρ • (δ X̂k|k−1)(δ X̂k|k−1)
H

N − 1
, (2.16)

where ρ is a distanced-based localization function and • denotes the element-wise
product. Using this modified sample covariance formula, (2.5) may be rewritten as

x̂j

k|k = x̂j

k|k−1 + αρ1 • (δ X̂k|k−1 δŶ
H

k|k−1) ×[
αρ2 •

(
δŶ k|k−1 δŶ

H

k|k−1

)
+ Rk

]−1 (
yj

k − H x̂j

k|k−1

)
(2.17)

where α =1/(N−1) is the constant defined in (2.5), ρi,m
1 is a distance-based localization

function relating the ith state and the mth measurement and ρ
m1,m2

2 is a localization
function relating m1th measurement and m2th measurement; both functions approach
unity as the distance between the corresponding flow quantities approaches zero, and
both approach zero as the distance between the corresponding flow quantities becomes
large.

2.2. Covariance inflation

Another challenge when using under-sampled representations of probability
distributions in high-dimensional state-space systems is ‘covariance collapse’. This
occurs when the majority of ensemble members are distributed on a fraction of
the attractor, and thus the computed statistics do not capture all of the principal
directions of uncertainty. Anderson & Anderson (1999) review this phenomena and
the effect it has in weather forecasting applications and discuss its simple practical
solution covariance inflation. Much earlier, Anderson & Moore (1979, pp. 131–134)
demonstrated that, even in linear KF applications, insensitivity to measurements
(resulting from accounting improperly for model uncertainty) can lead to filter
divergence. Furrer & Bengtsson (2007) further argue that most sources of error in
ensemble filters result in underestimation of the ensemble variance; thus, covariance
inflation is a natural mechanism for correcting the unknown deficiencies that lead to
an underestimated prior variance. Covariance inflation, as proposed by Anderson &
Anderson (1999), simply pushes the ensemble members away from the mean by some
arbitrary growth factor β at each time step,

x̂j = β (x̂j − x̂) + x̂. (2.18)

In weather forecasting applications, inflation parameters in the range of β ∈
[1.005, 1.05] demonstrate significantly improved estimator performance. Attempts
to develop adaptive methods for tuning β have been made in Anderson (2007, 2009)
and Wang & Bishop (2003), but unfortunately the results so far do not appear to
justify their complexity.
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3. Numerical results
We now characterize the ability of the EnKF, as described above, to estimate a 3D

incompressible turbulent channel flow, given measurements of the skin friction and
pressure on uniformly spaced 16×16 array on each wall. The numerical computations
presented use the standard spectral-spectral-second-order-finite-difference approach
of Bewley, Moin & Temam (2001) to simulate the uncontrolled, constant mass-flux
turbulent channel flow on a 643 grid with Lx = 2π, Lz = π and Ly = 2. (Note that
this code-base uses Lx , Lz and Ly to denote the streamwise, spanwise and wall-
normal directions, respectively. The reader is referred to Bewley et al. (2001) for
more details.) The flow is governed by the incompressible Navier–Stokes equation
with uniform density and viscosity. By defining the half-channel height δ, mean skin
friction τ̄w = − ν ∂ū1/∂n and mean friction velocity uτ = (τ̄w/ρ)0.5, this equation can
be conveniently non-dimensionalized where time, space and velocity are normalized
by ν/u2

τ , ν/uτ and uτ , respectively. As a result, the Reynolds number becomes simply
a function of viscosity Reτ = 1/ν. By choosing ν = 0.01, the domain is re-expressed, in
non-dimensional form, with L+

x = 628, L+
z = 314 and L+

y = 200. Although the domain
size is not identical to our previous work in flow estimation, it is larger than the
minimal flow unit required for the onset of turbulence (Jimenez & Moin 1991). This,
along with statistics generated for validation purposes, ensures that the results are in
fact representative of an estimator tracking a turbulent flow at low-Reynolds number.
The ‘truth’ model is calculated as an identical simulation running in parallel with the
EnKF-based estimator.

Since the simulation relies on Fourier transforms for computational efficiency, all
data are stored in frequency space as the simulation advances. This conveniently
allows for measurements to be extracted through high-order spectral interpolation
schemes. Wall shear stress in the streamwise and spanwise directions were calculated
via spectral interpolation in the wall-parallel directions and second-order interpolation
in the wall-normal direction. When pressure measurements were required, a Poisson
equation was solved.

As mentioned in §§ 2.1 and 2.2, localization and inflation are ad hoc yet essential
ingredients to the success of any large-scale EnKF implementation. The distance-
dependent localization functions ρ used in the present work were chosen to be
exponential in shape,

ρi,j = ρ(x(i), x(j )) = e|xi−xj |2Q , (3.1)

where Q = diag{[q1, q2, q3]} > 0 is a diagonal weighting matrix related to three length
scales. The appropriate selection of each qi reflects the ‘trust’ associated with the ability
of the sample covariance matrix to construct accurate correlations in the streamwise,
wall-normal and spanwise directions. These diagonal elements of Q correspond to the
half-height of the exponential function decay and are generally selected to correspond
to known flow statistics. These length scales were determined from correlation studies
of uncontrolled turbulence, analogous to those reported in Kim, Moin & Moser
(1987) and Bewley et al. (2001) and are subjected to a minor amount of additional
variation. The inflation parameter β = 1.01 was selected based on reported results
from the weather forecasting community (Anderson & Anderson 1999).

The simulation was performed using the Triton cluster at San Diego’s Super
Computing Center (SDSC), where each simulation required 70 h of compute time
on 66 parallel cores (the details of the cluster can be found at the SDSC website),
with each core corresponding to an ensemble member. This algorithm design choice
was determined by two unrelated but important constraints: the discretization of
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the domain and the size of the cluster on which the simulation was performed. The
computational expense of the EnKF simulation performed and the desire to drive it
all the way to statistical steady state (2200 ensemble updates were performed during
each simulation) prevented us from performing more extensive parametric studies on
these three length parameters at the present time, or repeating the study at higher
Reynolds numbers, both of which are left for future work.

The quality of the reconstruction is determined by comparing the perturbation
component of the true velocity field with the same perturbation component of the
estimated velocity field. Normalized error and correlation measures, as defined by
Bewley & Protas (2004), are used for comparison with previous work,

Errn( q ′
est , q ′

tru ) =

∫ Lx

0

∫ Lz

0

( q ′
est − q ′

tru )2 dz dx∫ Lx

0

∫ Lz

0

(q ′
tru)

2 dz dx

, (3.2)

Corr( q ′
est , q ′

tru ) =

∫ Lx

0

∫ Lz

0

q ′
estq

′
tru dz dx√∫ Lx

0

∫ Lz

0

(q ′
est )

2 dz dx

√∫ Lx

0

∫ Lz

0

(q ′
tru)

2 dz dx

. (3.3)

Note that quantities are primed to emphasize that the perturbation component of the
velocity field (that is, the instantaneous velocity component minus its planar average)
is being used in the comparison. The subscripts ()est and ()tru correspond to the
‘estimated’ and ‘truth’ values, respectively. These two normalized measures account
for the (x, z)-plane averaged statistics as a function of time and distance from the wall.
The long-time average of these measures provides a rigorous quantification of the
quality of the state estimate as a function of distance from the wall, approximating
their corresponding expected values, E[Errn(y, t)] and E[Corr(y, t)], at statistical
steady state.

The error norm defined above is perhaps the more sensitive of the two
criteria. It is normalized by the planar-averaged mean-squared energy of the truth
simulation, which makes it a particularly sensitive measure near the wall, where this
quantity approaches zero. (Note that an error norm near unity indicates that the
estimate is completely decoupled from the truth, whereas an error norm near zero
indicates that the estimate is in perfect agreement with the truth.) When significant
error is present, the correlation is useful to quantify the planar-averaged phase error,
as distinct from the planar-averaged amplitude error; an error in the amplitude of
the estimate (but not its phase) will adversely affect the error norm, but not the
correlation. Note also that a correlation near unity indicates perfect phase alignment
of the estimate with the truth.

Figure 2 shows the L2 energy of the difference between the estimate and the truth
as a function of t+. Note that the error norm and correlation were calculated, and
averaged, from t+ = 1000 to 2200 (1200 viscous time units after apparently converging
to statistical steady state). Through observation of the variations in averaged skin-
friction (skin friction averaged over the top/bottom walls), it is clear that temporal
averages are taken over multiple flow-throughs with substantial statistical averaging.

The most significant test of the estimator in this problem, of course, is to quantify
its convergence starting from arbitrary initial conditions. Figures 3 and 4 thus report
such a test, using the most suitable values of the localization parameters identified
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Figure 2. Convergence statistics versus viscous time units. L2 energy of the error of the
estimation, solid, and total wall drag, dashed, as a function of t+. Time averaged results in
figures 3 and 4 are averaged from time t+ = 1000 to 2200. The magnitude and variations in
total wall drag are consistent with those of an Reτ = 100 turbulent flow.
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Figure 3. Error norm in the estimation of an Reτ = 100 flow using the EnKF, starting from
bad initial conditions. The localization used is given in (3.1), with localization length scales
of Q = diag([50, 50, 25]) and localization constant β = 1.01. The dashed line represents the
statistics of the error before estimation was attempted (averaged over 2400 viscous time units),
and the line denoted � represents the error norm of the EnKF at statistical steady state.

thus far, Q = diag{[50, 50, 25]}. An initial condition for the estimator was generated
from a fully developed turbulent flow simulation (independent of the truth model)
and snapshots of this flow were taken every �t+ = 200 viscous time units to initialize
each ensemble member. Symmetry across the channel centreline in figures 3 and 4
reflect the approximate statistical convergence in the simulation. This symmetry would
be perfect if statistical steady state were in fact reached.
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Figure 4. As in figure 3, but reporting the correlation.

In this case, near perfect synchronization of the EnKF with the truth is observed.
The EnKF estimation was found to perform with at least an order of magnitude
less error at 20 viscous units from the wall than the previous best estimation results
reported in the literature on this problem (see § 1.2). In particular, we observe error
measurements of 0.001, 0.001 and 0.001 and correlation measurements of 0.99, 0.99
and 0.99 (in the u, v and w velocity components, respectively). As a point of comparison
Chevalier et al. (2006, when using the EKF) reported error measurements of 0.5, 0.88
and 0.9 and correlation measurements of 0.87, 0.59 and 0.59 at the same location.

4. Conclusions and future work
The EnKF depends on the sample covariance matrix P e, which is a low-rank

approximation of the estimated covariance matrix P . It is well known by those who
use the EnKF in weather forecasting applications that the finite size of the ensemble
in the EnKF causes spurious correlations and covariance collapse. In practice, these
phenomena must be compensated for through a distance-dependent localization
function and covariance inflation in order to ensure adequate convergence of the
estimator.

This paper has presented the first near-perfect state estimation of Reτ = 100
turbulent flow using wall information only; that is, we have demonstrated a sustained
synchronization of the state estimate with the truth when a random initial condition
is used in the estimator, and the localization function is tuned appropriately. When
comparing with previous results in the published literature, at least an order of
magnitude less error was observed at 20 viscous units from the wall.

Previous unreported results found that the ability to achieve such estimator
convergence is apparently fairly sensitive to the localization parameter used in the
wall-normal direction, and apparently fairly insensitive to the localization parameters
used in the streamwise and spanwise directions. To a certain extent, these results reflect
the law of the wall, the fundamental idea that any turbulence near-wall flow varies in
a predictable statistical fashion as a function of the distance from the wall. Exploring
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the estimator performance as a function of these localization parameters may reveal
inherent properties of the flow not yet known and warrants further investigation.

Besides further tuning of these heuristics, one interesting possibility for improving
the present estimation strategy is to implement a ‘Rogallo transform’ (Rogallo
1981; Rogallo & Moin 1984) for the quantities being estimated. In his pioneering
work, Rogallo showed that, in regions of high shear (in this case, near a wall), a
convenient transformation on the domain may be defined that moves something
like a windshield wiper. Such a transformation on the domain might in the present
problem provide a slower evolution of the individual discretized flow perturbation
quantities being estimated, thus creating an easier problem for the EnKF to estimate.
Another promising idea is to explore recent hybrid methods for state estimation that
consistently combine the strengths (and numerical tractability) of the EnKF and
4DVar approaches (see Cessna 2010).

Once the best estimator possible for this problem has been developed, of course,
the problem of controlling a turbulent flow based on this estimate must be revisited,
as well as the extension of this approach to higher Reynolds numbers. The present
investigation, which represents the first reasonable high-fidelity estimate of a turbulent
flow based on wall information only, represents a significant step in this direction.
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