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New Horizons in Sphere-Packing Theory, Part III:
Regular Noncartesian Directed Graphs for FPGA

Interconnects
Joseph Cessna and Thomas Bewley

Abstract—In directed graph topologies such as those used in
field-programmable gate arrays (FPGAs), there are two compet-
ing design objectives: (i) spread information rapidly across the
graph, and (ii) incorporate path redundancy and significantlocal
(nearest neighbor) communication. At one end of this spectrum,
for the most rapid information spread possible, butterfly graphs
are optimal, though they completely lack path redundancy. At the
other end of this spectrum, Cartesian-based graphs incorporate
extensive local structure and path redundancy, though they
essentially sacrifice the ability to spread information rapidly
across the graph. Previous efforts to accelerate the spreadof
information in Cartesian-based graphs have been somewhat ad
hoc from a graph-theoretic perspective. The present work gen-
eralizes these two classes of directed graphs into a unified,well-
structured framework, with the Cartesian and butterfly grap hs
as special cases of a more general class of interconnects; this
clearly-defined and well-structured new framework facilitates the
optimal (application-specific) balance to be struck somewhere in-
between the butterfly and Cartesian extremes.

Index Terms—Structured computational interconnect, FPGA,
directed graph, butterfly graph, 2D & 3D cartesian graph

I. BACKGROUND & T ERMINOLOGY

REGULAR directed graphs are built from a set of identical
nodes containing an equal number of incoming and out-

going directed links. Such graphs are useful for the propoga-
tion and processing of information within high-performance
massively parallel computer chips such as field-programmable
gate arrays (FPGAs); comprehensive reviews of this active
field of research include Dally & Towles (2003) and Duato,
Yalmanchili, & Ni (1997), and the many references contained
therein. In such chips, a large amount of information is fed in
parallel into and across the graph, one stage at a time, in order
to solve rapidly a large a complex problem via many relatively
simple pieces processed in a massively parallel setting. A
better understanding of the properties and tradeoffs inherent
to the directed graphs used at the heart of these designs might
facilitate the more effective design of such chips.

The present paper is a part of a larger study on the utility
of noncartesian graphs and packings; Part I of this study
(Bewley, Belitz, & Cessna 2011) describes the fundamental
concepts and constructions, and Part II (Belitz & Bewley 2011)
highlights the application of a closely-related body of theory
to the problem of efficient derivative-free optimization.

The directional graphs we will consider in this work, which
are discussed further in Bewley, Belitz, & Cessna (2011),
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Fig. 1. Two traditional directed graphs are shown; information is assumed
to flow from left to right. The 2D cartesian graph (top, 8×8) and the2-ary
4-fly (bottom, 4×2×2×2) represent the opposite extremes with regards to
performance characteristics. The cartesian graph contains exclusively local
links, and consequently has a lot of path diversity. In contrast, the butterfly
graph spreads information across the nodes much more efficiently, but lacks
any sense of locality from stage to stage and contains no pathdiversity.

are derived from more general (n+1)-dimensional topologies
that contain a flow directionx0, along which we can locate
discrete sets of nodes lying in the sequence of orthogonal
n-dimensional hyperplanes. We think of information flowing
forward, along this direction, passing in turn through eachor-
thogonal hyperplane (orstage) of the graph. For finite graphs,
each stage contains the same number of nodes. We then define
thetotal cardinalityof the graph as(N0×N1×·· ·×Nn ), where
N0 is the number of stages in the graph,M =(N1×·· ·×Nn ) is
the number of nodes in each stage, andNk is thekth cardinality
(i.e. the number of nodes in thekth dimension of each stage).
Thus, thesize(total number of nodes) of the graph isN0×M.

Necessarily, a node in a given stage must only connect
to nodes in the immediately preceding and following stages;
it may not connect to any nodes in its same stage. The
connection between stages is governed by the overall topology
of the graph and will vary from stage to stage in a repeating
pattern. The number of distinct connections between stagesis
a function of the dimensionn of the stages themselves. For
the directed graphs of interest, a node will connect to exactly
s nodes in both the forward and backward direction. Thus,s
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Fig. 2. The generalized degree-2 directed graph. Each stageis n-
dimensional, and the total cardinality is(N0 ×N1 × ··· ×Nn). When n = 1
this graph reduces to the 2D cartesian graph and whenNk = 2, ∀k > 0,
this graph reduces to the well-known2-ary butterfly. The full connectivity is
defined recursively in Figure 3.
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Fig. 3. The generalized degree-2 directed graph is best graphically defined
recursively through the combination of the two basic building blocks shown
above. At the lowest level, these building blocks reduce to asingle node.
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Fig. 4. The generalized degree-3 directed graph. Each stageis n-
dimensional, and the total cardinality is(N0 ×N1 × ··· ×Nn). When Nk =
3, ∀k > 0, this graph reduces to the well-known3-ary butterfly. The full
connectivity is defined recursively in Figure 5.
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Fig. 5. The generalized degree-3 directed graph is best graphically defined
recursively through the combination of the two basic building blocks shown
above. At the lowest level, these building blocks reduce to asingle node.

defines the degree of the graph. For this paper, we will focus
exclusively on directed graphs of degrees= 2 ands= 3.

A node in a given stage connects to itss forward neighbors
along achannel. Two nodes are said to be connected if there
exists an ordered set of channelsin the flow direction only
(i.e. a path) that connects a node in one stage to another
node in a subsequent stage. It is important to note that paths
only move in the flow direction. Redundant paths occur when
two nodes can be connected by more than one unique path.
These redundant paths are important because they decrease
bottlenecks in the graph and thus increase the graph’s overall
robustness. A graph with many redundant paths is usually

efficient at performing local data operations such as simple
comparisons or additions.

On the other hand, an increase in path redundancy neces-
sarily is associated with a decrease in thespreadof a graph.
The spread is a measure of how quickly information from one
node reaches the other nodes in subsequent stages.Saturation
occurs when the information from one node spreads to every
node in a future stage. Thesaturation lengthis the number of
traversed stages required until saturation is achieved. A graph
with a low saturation length has a high communication rate
across all nodes and thus can efficiently perform global data
operations such as data transposes.
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II. GENERAL CLASSES

A 2D cartesian graph (see top of Figure 1) has nodal degree
s= 2 and containsN0 = q stages with dimensionn= 1. The
total cardinality of the graph is(q× p), there areM = p
nodes per stage, and the size of the graph isq p. The cartesian
graph has a high saturation length ofq−1 when compared
to a comparable butterfly graph due to the high number of
redundant paths. These paths are a byproduct of the local
nature of the cartesian interconnect.

In contrast, a traditionalp-ary q-fly butterfly graph (see
Dally & Towles 2003, and the bottom subfigure of Figure
1) has nodal degrees= p and containsN0 = q stages with
dimensionn = q− 1. The total cardinality of the graph is
(q× p× ·· ·× p), there areM = pq−1 nodes per stage, each
flow normal cardinality is equal to the nodal degreeNk = p,
and the size of the graph isqM. As a result, it can be shown
that the butterfly graph provides the minimum saturation length
of any graph with stage sizepq−1. However, each node has
only one unique path to the nodes of the saturated stage and
thus lacks any path diversity (and consequently local nature).

To achieve the minimal saturation length, the traditional
degree-2 butterfly graph places many unnecessary restrictions
on the parameters of the graph (e.g. the dimension of each
stage, the cardinality of each dimension). While keeping the
nodal degree, overall size, and number of stages of the graph
constant, we can relax the constraints on the dimension and al-
low freedom to pick each dimension’s cardinality individually,
subject to n

∏
k=1

Nk = M. (1)

This allows us to define an entire family of degree-2 graphs
that include on one extreme the butterfly graph and on the
other the simple 2D cartesian graph. This family is illustrated
in Figures 2 and 3. As one might expect, the choices of both
dimension and cardinality have a direct effect on the local
versus global nature of the resulting graph, and therefore allow
for much design flexibility.

In a similar manner, the degree-3 butterfly graph can be
generalized by also removing the dimensionality and cardi-
nality constraints, subject to the overall size constraintof (1).
This produces another family of directed graphs that span the
range from entirely local to fully global connectivity. However,
unlike the degree-2 case, this family does not reduce to 3D
cartesian, as one might expect. This family of directed graphs
is shown in Figures 4 and 5.

In both the generalized degree-2 and degree-3 classes, the
connectivity between stages can be thought of as spanning
only one dimension at a time, in turn cycling through each
dimension. Thus, the connectivity pattern repeats itself every
n stages. An interesting third class of directed graphs can be
found by allowing the channels between adjacent stages to
span two dimensions at a time. This requires a degree-3 node
and an even number of dimensions in the graph’s stages. With
this design, the interconnect pattern repeats itself everyn/2
stages. As a result, we are able to obtain more local path
redundancy with higher-dimensional stages that in turn lead to
shorter saturation lengths. This family of graphs is illustrated
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Fig. 6. The generalized degree-3 double-twist directed graph. Each stage is
n-dimensional (forn even), and the total cardinality is(N0 ×N1×···×Nn).
When n = 2 this graph reduces to the well-known 3D cartesian graph. The
full connectivity is defined recursively in Figure 7
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Fig. 7. The generalized degree-3 double-twist directed graph is best
graphically defined recursively through the combination ofthe two basic
building blocks shown above. For one of the building blocks,the definition
varies at the odd and even levels. At the lowest level, though, these building
blocks still reduce to the basic node.
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TABLE I
INFORMATION SPREAD FOR SELECT DIRECTED GRAPHS(ASSUMING A LARGE NUMBER OF GATES PER STAGE).

Directed Graph n Gates reached at each stage from a particular input to the graph g10 g20

G
en

er
al

iz
ed

de
gr

ee
-2

Z2, V90
2 1 2 3 4 5 6 7 8 9 10 11 66 231

A+
3 , V90

3 2 2 4 6 9 12 16 20 25 30 36 161 946

V
90
4 3 2 4 8 12 18 27 36 48 64 80 300 2,800

V
90
5 4 2 4 8 16 24 36 54 81 108 144 478 6,797

V
90
6 5 2 4 8 16 32 48 72 108 162 243 696 14,325

V
90
7 6 2 4 8 16 32 64 96 144 216 324 907 27,110

V
90
8 7 2 4 8 16 32 64 128 192 288 432 1,167 46,836

V
90
9 8 2 4 8 16 32 64 128 256 384 576 1,471 76,126

V
90
10 9 2 4 8 16 32 64 128 256 512 768 1,791 119,772

V
90
11 10 2 4 8 16 32 64 128 256 512 1,024 2,047 176,122

G
en

er
al

iz
ed

de
gr

ee
-3

W
90
2 1 3 5 7 9 11 13 15 17 19 21 121 441

W
90
3 2 3 9 15 25 35 49 63 81 99 121 501 3,301

W
90
4 3 3 9 27 45 75 125 175 245 343 441 1,489 17,185

W
90
5 4 3 9 27 81 135 225 375 625 875 1,225 3,581 70,857

W
90
6 5 3 9 27 81 243 405 675 1,125 1,875 3,125 7,569 245,545

W
90
7 6 3 9 27 81 243 729 1,215 2,025 3,375 5,625 13,333 741,161

W
90
8 7 3 9 27 81 243 729 2,187 3,645 6,075 10,125 23,125 1,978,545

W
90
9 8 3 9 27 81 243 729 2,187 6,561 10,935 18,225 39,001 4,855,001

W
90
10 9 3 9 27 81 243 729 2,187 6,561 19,683 32,805 62,329 ?

W
90
11 10 3 9 27 81 243 729 2,187 6,561 19,683 59,049 88,573 ?

s
=

3 Z3 2 3 6 10 15 21 28 36 45 55 66 286 1,771

A+
5 4 3 9 18 36 60 100 150 225 315 441 1,358 22,165

Fig. 9. The signal propagation through a directed graph withthe A+
5 topology. The illustrated graph has a total cardinality of(12×4×4×4×4), thus each

of the 12 stages of the graph containM = 256 nodes with periodic connections across each of the flow normal dimensions. Here, a signal is injected into the
upper-left corner and travels down through the graph. The shaded blocks represent the gates that are reached by the signal at each subsequent stage. In this
example, the original signal saturates all 256 gates at the 12th stage. This illustrates how the periodic connections associated with finite cardinality serve to
further reduce the predicted spread of Table I by increasingpath redundancy.

Nk
k+1

k+1

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

Fig. 8. The weave in the(k+1)th dimension is combined with an additional
weave in thekth dimension as defined above. This shortens the repeatative
interconnect pattern between stages and allows for more path diversity while
maintaining a sufficient global spread.

in Figures 6, 7 and 8. As it turns out, forn= 2 this family of
graphs reduces to the well known 3D cartesian topology.

III. D ISCUSSION& SUMMARY

The properties of the three families of graphs are sum-
marized in Table I. For a given graph, we look at the
spread of information, starting from a single node and flowing

forward through the graph. To separate the issue of periodic
connections, an infinite cardinality was assumed during the
calculations. In general, adding the necessary constraintof
finite cardinality will increase overall path redundancy atthe
cost of reducing the expected spread shown in the table.
The finite cardinality is addressed further in Figure 9. The
shaded cells highlight the areas of optimal spread in each
graph; in these regions, the information is spreading to the
maximum number of nodes possible. As a result, there is
no path redundancy. The unshaded cells illustrate where each
graph diverges from the standard butterfly graph, introducing
more locality and robustness to the graph at the expense of
overall global spread. The final two columns of the table show
the total number of nodes reached in stages 0–10 and 0–20,
respectively. These numbers give a measure of the short versus
long range spread of each particular graph; the difference
between these two spreads is highlighted when comparing the
W

90
4 graph to theA+

5 topology. Across the board, through the
first ten stages, theW90

4 graph reaches more nodes, giving
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it a larger short range spread. Thus, theA+
5 graph contains

more local structure and more path redundancy over this range.
However, comparingg20 for each graph, one can see that past
ten stages, the spread ofA+

5 quickly outpacesW90
4 . This means

that the third family in some sense has the best of both worlds:
a relatively high local path redundancy followed by a large
long-range spread. While this may seem obviously superior,
there still is no perfect graph. Rather, one must understand
the needs of a particular application and select a topology
appropriately. This research attempts simply to unify some
of the existing design decision and to provide intermediate
alternatives.
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