Available online at www.sciencedirect.com

® JOURNAL OF
sc'E"cs@D'“” COMPUTATIONAL

s PHYSICS
ELSEVIER Journal of Computational Physics 187 (2003) 544549

www.elsevier.com/locate/jcp

On the extension of the complex-step derivative
technique to pseudospectral algorithms

Laura I. Cervino *, Thomas R. Bewley

Department of MAE, University of California at San Diego, 9500 Gilman Avenue, La Jolla, CA 92093-0411, USA

Received 8 August 2002; received in revised form 10 February 2003; accepted 20 February 2003

Abstract

The complex-step derivative (CSD) technique is a convenient and highly accurate strategy to perform a linearized
“perturbation” analysis to determine a “directional derivative” via a minor modification of an existing nonlinear
simulation code. The technique has previously been applied to nonlinear simulation codes (such as finite-element codes)
which employ real arithmetic only. The present note examines the suitability of this technique for extension to efficient
pseudospectral simulation codes which nominally use the fast Fourier transform (FFT) to convert back and forth
between the physical and transformed representations of the system. It is found that, if used carefully, this extension
retains the remarkable accuracy of the CSD approach. However, to perform this extension without sacrificing this
accuracy, particular care must be exercised; specifically, the state (real) and perturbation (imaginary) components of the
complexified system must be transformed separately and arranged in such a manner that they are kept distinct during
the process of differentiation in the transformed space in order to avoid the linear combination of the large and small
quantities in the analysis. It is shown that this is relatively straightforward to implement even in complicated nonlinear
simulation codes, thus positioning the CSD approach as an attractive and relatively simple alternative to hand coding a
perturbation (a.k.a. “tangent linear”) code for determining the directional derivative even when pseudospectral algo-
rithms are employed.
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1. Background

The idea of using complex variables in order to differentiate a function was (apparently) first mentioned
in [1,2]. The applicability of this old technique to differentiate a complicated function, such as that com-
puted by an involved finite-element code, was recognized by Squire and Trapp [3]. Recently, the CSD
technique has become popular in aerodynamic optimization [4-7]. This approach has proven to be very
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accurate and easy to apply to finite-eclement and finite-difference (FD) simulation codes but, to the best of
our knowledge, has not yet been extended to pseudospectral simulation codes. The present note explores
the suitability of this extension.

1.1. The finite-difference approximation

The directional derivative d of a continuous function #(¢) in the direction ¢, is defined by

24(9)
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which is simply the amount J(¢) changes when ¢ is updated in the direction ¢,, scaled by the size of the
update, in the limit that the size of the update approaches zero. There are a variety of ways to calculate
numerically this seemingly simple quantity. The most straightforward method to compute d is to consider a
Taylor-series expansion of the function #(¢ + ¢¢,) near ¢, from which a first-order FD formula for the
directional derivative is easily obtained
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Likewise, second- and higher-order FD formulae for the directional derivative can be easily obtained.
The drawback with these methods when using a finite-precision arithmetic computer is the difficulty in
finding the most suitable value for the step size ¢, since the accuracy of the numerical approximation of d is
very sensitive to this value. When ¢ is large, the Taylor-series truncation is not valid, and when it is small,
subtractive cancellation errors dominate.

To illustrate, the derivative of a scalar nonlinear function f(x) = e /y/tanx at x = 1 has been computed
using FD approximations with both single- and double-precision arithmetic. Fig. 1 shows that, for large e,
the error of these FD approximations scales with ¢", where n is the order of truncation of the higher-order
terms of the corresponding FD formulae. For small ¢, the error of all three FD formula in Fig. 1 is O(1/¢)
due to subtractive cancellation errors. In other words, when comparing two numbers which are almost the
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Fig. 1. Relative error of the directional derivative of /' (x) = e™*/+/tanx at x = 1 given by (solid) first-order, (dashed) second-order, and
(dot-dashed) fourth-order FD approaches and (circles+dots) the CSD approach using single-precision arithmetic (left) and double-
precision arithmetic (right). Note that both plots have essentially the same shape.
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same using finite-precision arithmetic, the relative round-off error is proportional to the inverse of the
difference between the two numbers. If the difference between the two numbers is decreased by an order of
magnitude, the relative accuracy with which this difference may be calculated using finite precision arith-
metic is also decreased by an order of magnitude.

1.2. The complex-step derivative approximation

The CSD approximation makes use of complex variables in order to compute the directional derivative.
If the complex extension #(z) of a real-valued function #(¢) is analytic, it can be expanded with a complex
Taylor series. In particular, the expansion of #(¢ + i, ), where i = v/ —1, may be written

74(9)
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where E| and E, are real and are related to the higher-order derivatives of _#. Taking the imaginary part and
dividing by ¢ gives a formula for the directional derivative
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note that the error in this formula is O(¢?) because the leading-order error of Eq. (2) is real. This method
has the advantage that it does not face the problem of the subtractive cancellation error; that is, d is
computed simply by taking the imaginary part of the complex number #(¢ + ie¢,). As seen in Fig. 1, for
small ¢, the relative error of the CSD approximation reaches an asymptotic value given by the machine
precision. Thus, when the CSD method is applied to this test problem, any choice of the step-size (providing
it is sufficiently small) gives a very accurate result. Similar results are also seen when the CSD approach is
applied to much more complicated functions, such as the calculation of the drag of a wing using an in-
volved finite-element code [6,7]. As the CSD technique is both highly accurate and quite easy to apply to an
existing nonlinear simulation code (simply convert all real variables in the code to complex and perturb the
imaginary component of the control variable), it has become a popular technique for computing the di-
rectional derivative.

2. Extension of the CSD approach to Fourier-based pseudospectral codes

Many codes in both fundamental turbulence research and numerical weather prediction are pseudo-
spectral. In such codes, products are computed in physical space, spatial derivatives are computed in some
“transformed” space, and the conversion between these two representations is made efficiently with a fast
transform technique, usually some variant of the fast Fourier transform (FFT). Pseudospectral techniques
are essential for the accurate computation of spatial derivatives in multiscale fluid systems when marginal
resolution is employed.

The most common and, perhaps, simplest pseudospectral approach is that in which the transformed
system is represented as a Fourier series. Unfortunately, as Fourier-based pseudospectral codes already
employ complex arithmetic, direct application of the standard complex-step derivative method, as discussed
above, is not possible. However, as the FFT is simply a linear manipulation of an otherwise real problem,
the idea behind the CSD method is still valid. In order to implement the CSD method in an existing
Fourier-based pseudospectral code, it is necessary to convert all formerly real arrays into complex arrays,
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double the size of all formerly complex arrays ', and modify the FFT calls appropriately; we consider here
two possible strategies:

(A) Simply replace the real — complex FFTs with complex — complex FFTs.

(B) Transform the state (real) and perturbation (imaginary) components with separate real — complex
transforms, storing the results of these two transforms in the original (complex) data array (now doubled in
size) in such a manner that performing spatial differentiation in the transformed space does not combine the
state and perturbation components of the analysis. For example, in the Fourier-based case with transforms
applied in the x direction only, defining /= f; + f; where f; is real and f; is pure imaginary, it follows that
filky) = f(=k,) and f(k,) = —f’(—=k,). Thus, for example, one may define the result of the
physical — Fourier transform of the quantity f as

A filk,) for k. >0,
flk) =S fi(k,) for ke <0,
£(0)  for k, = NX /2 (the so-called “oddball” wavenumber).

Spatial derivatives may then be computed using the original simulation code (however complicated)
without further modification. Further, this representation provides enough information to recover both f;
and f; upon separate complex — real inverse transforms while insuring that the state and perturbation
components of the analysis are not combined during either the (forward and inverse) transforms or when
applying the differentiation operations at each wavenumber.

To illustrate the difference in accuracy between the FD method and the two variants of the CSD method
described above when applied to a pseudospectral simulation code, both methods have been implemented
on an artificial optimization problem in which the dynamical system is governed by the nonlinear viscous
Burgers equation
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in the periodic domain x € [0,2n]. A pseudospectral (FFT-based) technique is used to compute the spatial
derivatives. The system is advanced in time from 0 to 7, and the values v = 0.067 and T = 6 were used in
the numerical simulation. The initial condition is given by u(0) =14 0.2sin(x) 4+ 0.02sin’(x — 1) +
¢ sin(x — 1), where ¢ is the ‘“control parameter”. The function of interest is defined as #(¢) =
fo f s |u(x, ) )|*dxdr. The relative errors of both the FD and CSD approximations of d ¢ /d¢ at ¢ = 0 are
shown in Fig. 2. The exact value is obtained with a “direct’” method, formed by writing a separate nu-
merical code (sometimes called a “tangent linear” code) which explicitly calculates the perturbation
equation (for further discussion, see, e.g., [8]). As seen in Fig. 2, for large ¢, the errors of both the FD and
CSD approximations are seen to scale with ¢ in a manner which is similar to the case evaluated in Fig. 1.
The CSD approach using strategy B (in which the real and imaginary parts are transformed separately)
achieves an asymptotic value of the error for small ¢ in the same manner as it did in Fig. 1. The selection of ¢
thus has no effect on the accuracy of the calculation, as long as it is chosen to be sufficiently small.
However, when using strategy A (in which the real and imaginary parts are transformed simultaneously
using a complex — complex transform), the error of the CSD method does not approach an asymptotic
value. Instead, it scales like O(1/¢) for small ¢. This is due to the fact that complex — complex Fourier

! Note that, when computing the FFT of a real function £ (in one-dimensional, two-dimensional and three-dimensional problems), it
is only necessary to store half of the Fourier coefficients, since the other half may be recovered by the identity f(k) = f*(—k). This
identity no longer holds if f is complex.
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Fig. 2. Relative error of (dashed) first-order and (dot-dashed) second-order FD approaches and the CSD approach using (solid)
strategy A and (solid-circle) strategy B.

transforms combine the real and imaginary parts of the analysis. Thus, the large (real) and small
(imaginary) numbers in the analysis are combined by the FFTs, leading to numerical inaccuracies which are
found to be comparable to the subtractive cancellation errors of the second-order FD approach.

3. Discussion and extension to other pseudospectral methods

The present analysis extends directly to other efficient pseudospectral methods based on fast transforms,
such as those based on Chebyshev transforms, sine/cosine transforms, etc. Note that, at their core, most such
methods make use of FFTs and, therefore, face issues quite similar to those explored above. More precisely,
if the CSD calculation anywhere involves a linear combination of the state and perturbation components of
the analysis, the CSD method will fail to provide an asymptotic (small) error as ¢ is made small.

However, via a minor modification of the wrappers on the forward and inverse transformation algo-
rithms, it appears always to be possible to transform the state and perturbation components of the analysis
separately and to keep these two components isolated during the process of spatial differentiation in the
transformed representation, thereby retaining the remarkable accuracy of the CSD approach for com-
puting the directional derivative over a broad range of the perturbation magnitude via a minor modification
of the original simulation code. The CSD method for computing the directional derivative has thus been
found to extend to pseudospectral simulation codes in a favorable manner, providing an attractive and
simple alternative to writing a separate ‘“‘tangent linear”” code from scratch for the computation of the
directional derivative.
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