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Abstract

The problems of exact state reconstruction and approximate state estimation based on wall information in a wall-bounded
incompressible unsteady flow are addressed. It is shown that, if in an arbitrarily small neighborhood of timetprecise measurements
are made of the two components of wall skin friction and the wall pressure, all terms in the Taylor-series expansions of the
unsteady flow state near the wall at timet may be determined (in the linear setting, this determination may be made based on
skin-friction measurements alone). Combining this fact with the analyticity of solutions of the nonlinear Navier–Stokes equation
and the unique continuation theorem for analytic functions, in theory complete reconstruction of a fully-developed turbulent
flow in a channel at any Reynolds number at timet is possible given only information about the unsteady flow available at
the wall in a neighborhood of timet, withoutknowledge of the initial conditions of the flow. Thus, skin-friction and pressure
measurements on the wall in a neighborhood of timet provide a unique “footprint” of the entire unsteady turbulent flow
state; no other flow can have the same footprint. Indeed, higher-order terms are shown to uniformly improve the correlation of
truncated Taylor-series expansions with the DNS of a turbulent flow near the wall. However, such series extrapolations amplify
measurement noise, as they require differentiation in both space and time of the measurements, and the radius of convergence
of the Taylor series expansions is less than 10 wall units. The so-called linear stochastic estimation technique, in which the
polynomials forming the basis of the series expansion are replaced by well-behaved functions (such as POD modes) on the entire
flow domain also demonstrates very poor convergence. In light of these limitations on direct extrapolations from measurements
in the practical setting, an adjoint-based algorithm is presented and numerically tested for estimating the state of an entire
turbulent channel-flow system based on a time history of noisy measurements at the wall. This algorithm effectively uses the
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unsteady nonlinear Navier–Stokes equation itself as a filter to find the flow solution that is most consistent with the available
measurements.
Publihsed by Elsevier B.V.
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1. Introduction

During the last 10 years, there has been a flurry of activity in controlling both laminar and turbulent flows in
certain idealized settings. The goal of this research thrust has been two-fold: to learn more about fundamental flow
physics, and to begin to shed light on how to control fluid flow in practical engineering applications with model-
based control strategies. For recent surveys of this active field of research, see, e.g.,[3,8,10], and the references
contained therein.

An important and largely unsolved problem in model-based feedback control of turbulence is the estimation
of the unsteady flow state based on the available flow measurements when the initial conditions of the unsteady
flow are unknown. From the literature survey we have performed (see the above-mentioned review articles for
several examples), it appears that, to date, all efforts to control and/or estimate wall-bounded flows with information
available at the wall only have used measurements ofeitherwall skin friction or wall pressure. A few examples
from groups working in related areas include[5,15,16,19,20,22,26]. Those who have explored the possible role
of pressure measurements in flow estimation and control applications include[2,8,11–14,17]. The present note
characterizes the additional opportunities that are available when measurements ofbothwall skin frictionandwall
pressure are used.

In Section 2, it is shown that, if precise measurements are made in a neighborhood of timet of the two components
of wall skin friction,∂u/∂y and∂w/∂y, and the wall pressure,p, an arbitrary number of terms in the Taylor-series
expansions of the turbulent flow state near the wall at timet may be determined. Thus, at least in theory, with this
information we can find the solution at timet to an unsteady flow problem without the knowledge of the initial
condition. Using a high-fidelity DNS database of aReτ = 180 turbulent channel flow, it is shown that the radius of
convergence of these Taylor series appears to be less than 10 wall units.

The idea of extrapolating directly from instantaneous measurements to flow field patterns has gained a certain
level of popularity in the field of fluid mechanics. The approach commonly used, based on conditional aver-
ages, is referred to as linear stochastic estimation (LSE), and is discussed further in, e.g.,[1,5]. In the present
investigation, changing the set of basis functions to an orthogonal, well-behaved set of basis functions on the
entire flow domain (such as Fourier inx andz and Chebyshev or POD iny), in the spirit of the LSE approach,
demonstrated even worse convergence properties than the approach based on Taylor series, as discussed briefly in
Section 2.7.

In practice, measurements are noisy, and thus dynamic state estimation strategies which filter the measured
information using the governing equation itself (such as Riccati-based extended Kalman filters and adjoint-based
methods for model predictive estimation) are much better behaved than ill-posed direct extrapolations of the flow
field from instantaneous measurements at the wall. Significantly, dynamic state estimation strategies assimilate
the information contained in an available history of noisy measurements into an evolving estimate of the state
without requiring differentiation of the measurements, thereby extracting the information in the history of noisy
measurements which is most consistent with the governing equation itself. In Section 3, a model predictive al-
gorithm is presented and numerically tested for this state estimation problem. It is shown that the three types
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of available wall measurements (that is,∂u/∂y, ∂w/∂y, andp) may be used to drive the three possible locations
of forcing on the boundary in the relevant adjoint problem, and numerical simulations again indicate the util-
ity of simultaneously using all three flow quantities available at the wall when attempting to do practical state
estimation.

Note that referring to the boundary values of∂u/∂y and∂w/∂y as “wall skin friction” is a bit loose, as the
corresponding components of the shear-stress tensor at the wall,τxy = µ(∂u/∂y + ∂v/∂x) andτzy = µ(∂w/∂y +
∂v/∂z), both include contributions from the boundary values ofv on the wall and are scaled by the viscosityµ.
We assume the viscosityµ and the wall-normal velocityv at the wall are known in this work, so∂u/∂y and∂w/∂y
may easily be determined from measurements ofτxy andτzy at the wall. The idealized problem of a continuous
distribution of both actuation and sensing on the wall is not physically realizable anyway; how this configuration
might be approximated in a real implementation is an application-specific issue which we will not address here.
We will thus use the words “streamwise and spanwise wall skin-friction distributions” to refer to the distributions
of ∂u/∂y and∂w/∂y on the wall without ambiguity.

1.1. Governing equations

This paper considers an incompressible unsteady flow in a channel with known Dirichlet boundary conditions on
the velocity,{uw, vw, ww}, known (and sufficiently smooth) externally-applied forcing{F1, F2, F3} on the interior,
and known measurements of the skin-friction and pressure distributions on the walls,{(∂u/∂y)|w, p|w, (∂w/∂y)|w}.
Initial conditions on the flow at timet0 are unknown; we desire to reconstruct exactly (or to estimate approximately)
the unsteady flow state at timet > t0 everywhere in the channel based on the wall information and the externally-
applied forcing only.

Without loss of generality, Section 2 analyzes the region adjacent to one of the walls, defining thex–y–z coordinate
system such thaty is the wall-normal direction, with the wall located aty = 0. In Section 3, we switch to anx1–x2–x3
coordinate system, and consider an entire channel-flow system in the domain (0× L1) × (−1 × 1) × (0 × L3).

The Navier–Stokes equation governing the flow is given by

∂u

∂t
= −∂p

∂x
+ ν�u+ F1 − u

∂u

∂x
− v

∂u

∂y
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∂u
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+ ∂w

∂z
, (1.2)

where� � ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. The continuity equation(1.2) constrains the three velocity components
{u, v,w}, which evolve according to the momentum equations(1.1a)–(1.1c), to lie in a divergence-free subspace.
This constraint is applied through the influence of the pressurep in the momentum equations, which acts as a
Lagrange multiplier in these equations in such a way that the continuity equation is satisfied at every point in space
and every instant in time. We thus see that the Navier–Stokes equation effectively admits onlytwo degrees of freedom
per spatial location. Noting this fact, it is common to represent solutions to incompressible Navier–Stokes systems
with a reduced, divergence-free form, thus applying the continuity equation implicitly.

One popular divergence-free form, convenient in terms of the imposition of Dirichlet boundary conditions on the
velocity at the walls in a plane channel flow, is the{v, ωy} form, in which the wall-normal component of velocity,
v, and the wall-normal component of vorticity,ωy � ∂u/∂z− ∂w/∂x, are retained as the two independent degrees
of freedom per spatial location. From these two fields and the appropriate boundary conditions,u andw may be
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reconstructed exactly, andp may be determined up to an arbitrary constant. In the{v, ωy} formulation, evolution
equations governingv andωy are found by appropriate manipulation of(1.1) and (1.2). The right-hand sides of
these equations may be interpreted as functions ofv andωy only by substitution of the appropriate formulae for the
reconstructions ofu, w, andp. The fact that only two of the four variables in the set{u, v,w, p} are independent
in incompressible flows can lead to the mistaken impression that wall measurements of∂u/∂y, ∂w/∂y, andpmust
in some sense be redundant. Though this is in fact true in the linear case, this is not true in the nonlinear case, as
shown below.

2. Exact state reconstruction from precise wall information

2.1. Taylor-series approximation: the general case

The Taylor-series expansions near the wall of the individual components of the velocity and the pressure may be
written in the form

u(x, y, z, t) =
∞∑
j=0
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, v(x, y, z, t) =

∞∑
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Taylor-series expansions may be defined in a similar fashion for the individual components of the vorticity, with
expansion coefficients{ej, fj, gj}. We now seek to express the expansion coefficients{aj, bj, cj, dj, ej, fj, gj} as a
function of the externally-applied forcing,{F1, F2, F3}, and the available data on the wall, which includes the bound-
ary conditions on the velocity{uw, vw, ww} and the measurements{M1 � (∂u/∂y)|w,M2 � p|w,M3 � (∂w/∂y)|w}.

We first observe that computing∂j/∂yj of (1.2) results inbj+1 = −∂aj/∂x− ∂cj/∂z; that is, higher-order ex-
pansion coefficients forvmay be expressed as a simple function of lower-order expansion coefficients foru andw.
We note also that the zeroth- and first-order expansion coefficients foru andw and the zeroth-order expansion
coefficient forv andp are given directly by the boundary conditions and measurements. We therefore have

a0 = uw, b0 = vw, c0 = ww, a1 = M1, b1 = −∂a0

∂x
− ∂c0

∂z
, c1 = M3, d0 = M2. (2.1)

The second-order expansion coefficients foru andw and the first-order expansion coefficient forp may be
obtained by rearranging the momentum equation(1.1) in the following form:
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where the surface Laplacian is defined such that�s � ∂2/∂x2 + ∂2/∂z2. Evaluating (2.2) at the wall, it follows
that:

a2 = 1
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Note that, to simplify the derivation,dj is computed afterbj+1. For all higher-order terms in the expansions of
u, v, w, andp, general formulae may now be derived. Withj ≥ 3, we proceed further by taking∂j−2/∂yj−2 of
(2.2), applying the binomial theorem to the derivatives of the nonlinear terms, and evaluating at the wall, which
leads to:
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Combining this result with (2.1) and (2.3), it is seen that we may determineall terms in the Taylor-series expansions
for u, v, w, andp from the current values of the wall measurements of∂u/∂y, ∂w/∂y, andp and the derivatives of
these quantities inx, z, andt, together with knowledge of the externally-applied momentum forcing and the velocity
boundary conditions.

The Taylor-series expansions for the vorticity field follow directly from the Taylor-series expansions for the ve-
locity field. Noting the definitionsωx = ∂w/∂y − ∂v/∂z,ωy = ∂u/∂z− ∂w/∂x, andωz = ∂v/∂x− ∂u/∂y, inserting
the Taylor-series expansions for the velocity and vorticity components, and matching like powers ofy, it follows
immediately for allj that:

ej = cj+1 − ∂bj

∂z
, fj = ∂aj

∂z
− ∂cj

∂x
, gj = ∂bj

∂x
− aj+1.

2.2. Taylor-series approximation: the case with homogeneous boundary conditions

The expressions given above simplify greatly if we takeuw = vw = ww = 0 andF1 = Px(t), F2 = F3 = 0, as
in the case of uncontrolled turbulent channel flow. Defining the notation
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the first four nonzero terms in the expansions for the velocity, pressure, and vorticity can be written as
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Note that all of these Taylor series reconstruct the flow state by extrapolation of thelocal values of the flow
measurements and the external forcing and their derivatives in space and time.

2.3. The linear case — pressure measurements not required

Consider now an unsteady Stokes flow in a channel, governed by the Navier–Stokes equation(1.1) with all
nonlinear terms removed. This system requires three boundary conditions on the walls in order to be well posed
in the sense of solving the evolution of the flow forward in time from known initial conditions. Let us now look at
the details of the Taylor-series expansions to determine how much information on the walls is sufficient in order to
uniquely determine the unsteady flow state everywhere in the channel-flow domain at timet without knowledge of
the initial conditions via measurements at the walls:

(1) If one looks at the wall quantitiesat time t, one needs an infinite number of quantities (boundary conditions and
stress and their derivatives in time up to infinite order) to reconstruct the Taylor series.

(2) If one looks at the wall quantities in aneighborhoodof time t, one needsfivequantities on the walls (boundary
conditions and streamwise and spanwise wall skin friction; wall pressure measurements are not required). From
these five wall quantities in a neighborhood of timet, the entire Taylor-series expansion may be determined.
This is because, in this case, the sixth wall quantity (wall pressure) can be reproduced from the other five wall
quantities in a neighborhood of timet via solution of an (elliptic) 3D Poisson equation with Neumann boundary
conditions:

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
p = ∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z
with

∂p

∂n

∣∣∣∣
w

= d1,



34 T.R. Bewley, B. Protas / Physica D 196 (2004) 28–44

whered1 may be determined from (2.3) and (2.1) without wall pressure measurements. Note that in order to
perform a local reconstruction of the flow, we need either:

(a) local information of the nine quantities{uw, vw, ww, F1, F2, F3, (∂u/∂y)|w, p|w, (∂w/∂y)|w} and their space
and time derivatives, or

(b) the five quantities{uw, vw, ww, (∂u/∂y)|w, (∂w/∂y)|w} and their time derivatives everywhere on the walls and
the three quantities{F1, F2, F3} and their time derivatives everywhere in the channel.

2.4. The nonlinear case — pressure measurements required

When moving from the linear case to the nonlinear case, the pressure can no longer be determined from a 3D
Poisson equation based on{uw, vw, ww, F1, F2, F3,M1 � (∂u/∂y)|w,M3 � (∂w/∂y)|w} alone, and thus strategy (b)
described above (without wall pressure measurements) is no longer viable. Note also that, via simple combination
of (1.1)and (1.2), it is possible to write a 2D Poisson equation for the wall pressure; however, it is not possible to
solve this equation forp|w based on{uw, vw, ww, F1, F2, F3,M1,M3} alone.

The wall pressure measurementM2 � p|w plays an important role in the higher-order terms in the Taylor-series
expansions derived above; without it, these expansions must be truncated at very low order. Thus, though pressure
measurements may be dispensed with in the global flow reconstruction problem in the linear setting (replacing
the wall pressure measurements with the solution of an elliptic Poisson problem), the derivation presented above
indicates a valuable role for wall pressure measurements in the global reconstruction of the state of the nonlinear
turbulent channel-flow system, regardless of the technique actually used to assimilate these measurements into an
estimate of the state of the turbulent flow.

The need for the local values of six wall quantities (the boundary conditions on the three components of the
velocity, measurements of the streamwise and spanwise wall skin friction, and the wall pressure provided by either
local pressure measurements or, in the linear case, by solving a global Poisson equation) in a neighborhood of timet
in order to complete the Taylor series at a point is readily apparent from the equations derived above. It is consistent
with the fact that the Navier–Stokes equation is a set of three second-order evolution equations that requires six
boundary conditions in order to be marched forward in time. However, the problem of instantaneous reconstruction
of the state from measurements is quite different than the problem of advancing the PDE in time, as the former
problem does not require initial conditions. It is possible that two different nonlinear flows with the same boundary
conditions and external forcing have the same skin-friction footprints in a neighborhood of timet, but it not possible
that two such flows have the same skin-frictionandpressure footprints in a neighborhood of timet; however, no
simple example flows illustrating this fact have yet been identified.

2.5. Evaluation of truncated Taylor series in a DNS of turbulent channel flow

We now investigate the range of validity of the Taylor-series expansions computed in Section 2.2 subject to
various levels of truncation. For this purpose, we use a DNS database for an uncontrolled, constant-mass flux
turbulent channel flow atReτ = 180 using the spectral/finite-difference/spectral code of Bewley et al.[4] on a
256× 129× 256 numerical grid. Using the wall information (i.e., the measurementsM1,M2, andM3) to evaluate
the coefficients in the expansions listed in Section 2.2 (truncated after thei′th-order term), we can reconstruct the
velocity and vorticity components and the pressure. The quality of the reconstruction (as a function of the level
of truncation,i, and the distance from the wall,y) may be characterized by the correlation of the perturbation
components of the reconstructed and actual fields, given by

Corry(q
′
rec, q

′
act) �

∫ L1
0

∫ L3
0 q′

rec(y)q′
act(y) dx dz√∫ L1

0

∫ L3
0 (q′

rec(y))2 dx dz
√∫ L1

0

∫ L3
0 (q′

act(y))2 dx dz
, (2.4)
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or via the corresponding planewise error norm, given by

Errny(q
′
rec, q

′
act) �

√∫ L1
0

∫ L3
0 (q′

rec(y) − q′
act(y))2 dx dz√∫ L1

0

∫ L3
0 (q′

act(y))2 dx dz
, (2.5)

whereq’ denotes the perturbation component (with the mean components subtracted off) of any quantity chosen
from the set{u, v,w, p, ωx, ωy, ωz}, and the subscripts “rec” and “act” correspond to the reconstructed and actual
fields, respectively. The correlations and planewise error norms are computed for the perturbation fields to avoid the
bias that might be introduced by the mean field. Thus, the statistics at a given distancey from the wall are computed
by averaging the instantaneous perturbation fields over the streamwise and spanwise directions; upon discretization,
this corresponds to averaging over 216 grid points for each datapoint reported. Spatial differentiation of the wall
measurements (in the directionsx andz) was carried out spectrally, and temporal differentiation was carried out
using a second-order central-difference approximation. InFigs. 1 and 2, we show the dependence of the correlation
(2.4) and the planewise error norm (2.5), respectively, for all the quantities in the set{u, v,w, p, ωx, ωy, ωz} as a
function of the distance from the wally and the order of truncationi. The wall-normal coordinate is given in wall
units asy+ = y/(ν/uτ), whereuτ = √

τw/ρ andτw is the average skin friction on the wall. In all cases we note a
systematic improvement of the reconstruction as more terms are included in expansion.

An alternative representation of the convergence of the Taylor-series expansions listed in Section 2.2 as the number
of terms is increased is presented inFig. 3. This figure shows the joint probability density function (JPDF) of the
truncated Taylor-series approximation of the wall-normal velocity with the actual wall-normal velocity evaluated at
y+ = 3 as the number of terms in the truncated Taylor series is increased. The rapid approach of the JPDF towards
a diagonal line indicates the convergence of the Taylor-series expansion.Fig. 4 repeats the calculation ofFig. 3,
but evaluated aty+ = 10. Even when including several terms of the Taylor-series expansion, the JPDF resembles
a shotgun blast. From the terms which are evaluated here, convergence of the Taylor series cannot be detected.
Carrying the expansion to higher orders is not feasible due to the limited accuracy of the numerical database.

Fig. 5illustrates flow visualizations in the cross-flow plane of the actual flow and its Taylor-series reconstruction
based on skin-friction and pressure measurements on the wall, again indicating the convergence of the Taylor series
near the wall.

The main messages to be taken from Figs. 1–5 are:

(A) The higher-order information available when both wall skin friction and wall pressure are used as measured
quantities is quite significant in the static reconstruction of the flow adjacent to the wall by extrapolation of the
measured quantities.

(B) However, the radius of convergence of Taylor-series expansions of the flow evaluated at the wall is relatively
small (less than 10 wall units).

Note that point (B) does not invalidate point (A).

2.6. Analyticity and unique continuation

Mathematical proof of the space analyticity of solutions of Navier–Stokes systems on the attractor of fully-
developed turbulence in infinite and periodic domains (with sufficiently-smooth forcing) is well established (see
[9]). Extension of this proof to establish the space analyticity of fully-developed channel-flow turbulence is straight-
forward (I. Kukavica and M. Ziane, private communication), and will be reported separately. The unique continuation
theorem (see, e.g.,[24]) implies that there is a unique analytic function in an entire channel-flow domain which
coincides exactly with the analytic function given by a (converged) Taylor-series expansion in the vicinity of the
wall (e.g., on the domain 0< y+ < 3). It is thus (in theory) possible to reconstruct the entire (analytic) solution
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Fig. 1. Correlations of the components of the reconstructed and actual velocity, pressure, and vorticity fields as a function of the distance from
the wall,y+, in a turbulent channel flow atReτ = 180. Reconstructions were computed by retaining the terms indicated in the Taylor-series
expansions listed in Section 2.2, and the correlations were computed according to (2.4).

of the flow in the channel based on complete Taylor-series information which is convergent only in the immediate
vicinity of the wall. Formally, an algorithm to reconstruct the entire flow solution might then proceed as follows:

(1) Based on the Taylor-series expansion ofuon the wall, computeu, ∂u/∂y, ∂2u/∂y2, etc., on some plane near the
wall (say,y+ = 3).

(2) Based on the information computed in step (1), compute a new Taylor series expansion about the planey+ = 3
and evaluate it to determineu, ∂u/∂y, ∂2u/∂y2, etc., aty+ = 6.
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Fig. 2. Error norms corresponding to the correlations plotted inFig. 1.

(3) Based on the information computed in step (2), computeu and its derivatives aty+ = 9. Continue marching in
this fashion, one plane at a time, to reconstruct the flow solution in the entire channel.

Unfortunately, the proof of the convergence of this algorithm is only formal, as it requires the exact convergence
of all of the calculations in step (1) before proceeding to step (2). If these series expansions are truncated, errors
accumulate, and the algorithm listed above breaks down. Thus, this algorithm cannot be used to extend the domain of
convergence of the original Taylor series expressed on the wall in a numerical calculation which retains only a finite
number of terms. More practical algorithms to reconstruct the flow solution based on the analyticity of Navier–Stokes
solutions coupled with accurate truncated Taylor-series expansions on the wall will be explored in future work.

However, this argument is sufficient to establish that wall measurements of streamwise and spanwise skin friction
and pressure in a neighborhood of timet combine to provide a unique “footprint” of a turbulent flow state; no other
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Fig. 3. Joint probability density functions (JPDF) of the truncated Taylor-series approximations of thev-component of the flow (vertical axis)
with the actual flow (horizontal axis) evaluated aty+ = 3, using truncation of the Taylor series after (a) 2, (b) 3, (c) 4, and (d) 5 terms.

fully-developed turbulent flow realization (subject to the same externally-applied forcing) can possibly have the same
footprint, regardless of its initial conditions. The same cannot be said if one of the three measurements is missing.

2.7. Extrapolation with global basis functions

The above extrapolations with Taylor series represent a lower-triangular relationship between the vectorc1
containing all of the coefficients of the Taylor-series expansions (truncated at some order) and the vectorm containing
all of the measurements and their time derivatives (also truncated at the appropriate order). That is, takingc1 = A1m,
A1 is lower triangular. In other words, when additional information concerning higher-order time derivatives of the
measurements is provided, additional higher-order coefficients in the Taylor series may be determined, but the
lower-order coefficients in the Taylor series remain unchanged.

In the spirit of the LSE approach mentioned in Section 1, the velocity field may be expanded into global basis
functions, such as Fourier inxandzand Chebyshev iny. However, looking at a single Fourier mode, the relationship
C2 = A2m between the vectorc2 containing all of the coefficients of the Chebyshev expansions (truncated at
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Fig. 4. The same as Fig. 3 but evaluated aty+ = 10. Note that the subfigure (a) closely approximates that reported in Fig. 6c of[5].

some order) and the vectorm containing all of the measurements and their time derivatives (also truncated at
the appropriate order) found via the equations of Section 2.1 turns out to beupper-triangular. In other words,
when information concerning higher-order time derivatives of the measurements is provided,all terms in the series
expansion are modified. For this reason, this type of expansion did not yield coefficients which converged quickly
in the present investigation. Expansions based on POD modes are similarly ill-behaved; the matrices involved with
these expansions at each Fourier mode are full. For this reason, expansions into series with global basis functions
was not pursued further in the present work.

3. Approximate state estimation from noisy wall measurements

The above results highlight the fundamental importance of using all three flow quantities available at the wall
when attempting to reconstruct a flow in the hypothetical case in which perfect measurements are available on the
wall in a neighborhood of timet.
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Fig. 5. Typical (a) actual and (b) reconstructed turbulent flow fields in the cross-flow plane near the wall, using four nonzero terms in the
Taylor-series reconstruction. Note that the accuracy of the state estimate is degraded away from the wall, but the velocity fields are in general
agreement close to the wall. Note in particular that the sweep event centered atz+ = −10 in the actual flow appears to be centered atz+ = −15
in the four-term reconstruction of the flow.

We now address the relation of the above findings on the hypothetical problem of exact state reconstruction with
precise wall information to the practical problem of approximate state estimation with noisy measurements at the
wall. Such a problem is often referred to as “variational data assimilation” or “4D-var”, and plays a central role
in the field of numerical weather prediction (for a recent review of this active field of research, see, e.g.,[18]).
There are essentially two model-based approaches to the problem of state estimation in this setting: adjoint-based
strategies and Riccati-based strategies, the latter of which are often based on reduced-rank extended Kalman filters.
Complete description of these two approaches is beyond the scope of the present paper. However, in light of the
observations made previously concerning the valuable role of wall-pressure measurements in the problem of exact
state reconstruction near the wall in wall-bounded turbulent flows (that is, in the nonlinear setting), it is enlightening
to review the formulation for adjoint-based state estimation with noisy measurements at the wall. In the present
section, rather than taking the wall aty = 0, we switch to anx1–x2–x3 coordinate system, and consider an entire
channel-flow system in the domain (0× L1) × (−1 × 1) × (0 × L3). For simplicity and without further mention,
we consider periodic boundary conditions inx1 andx3 on all field variables in the derivation that follows.

Define first an (unknown) noise vectorw = (w1 w2 w3 )T and a noisy wall measurement vectorm =
(m1 m2 m3 )T, wherem1 � (∂u1/∂n̄)|w + w1, m2 � p|w + w2, andm3 � (∂u3/∂n̄)|w + w3, distributed in time
over an “assimilation window” [0, T ] and in space over the channel walls for an “actual” channel-flow system.
For convenience,̄n is defined as aninward-facing normal. We now seek to determine the (unknown) initial state
Φ of a model system everywhere inside the channel such that, when advanced in time over the interval 0→ T ,
the model reproduces the observed measurements to the maximum extent possible. Defining the state vectorq, the
perturbation vectorq′, and the adjoint vectorq∗ such that

q =
(
u

p

)
, q′ =

(
u′

p′

)
, q∗ =

(
u∗

p∗

)
,

we first write the Navier–Stokes equation(1.1)governing the model system in the compact form

N(q) =

 ∂u
∂t

+ (u · ∇)u + ∇p− ν�u

∇ · u


 =

(
Pxi

0

)
in Ω× (0, T ) with u|t=0 = Φ, u|w = 0. (3.1)
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The objective in the present optimization problem is defined mathematically as the minimization over all feasible
initial conditionsΦ of a cost functionalJ(Φ) which represents the “misfit” of the measurements in the actual and
reconstructed systems

J (Φ) = 1

2

∫ T

0

[
+1

∥∥∥∥∂u1

∂n̄
−m1

∥∥∥∥
2

w
+ +2 ‖p−m2‖2

w + +3

∥∥∥∥∂u3

∂n̄
−m3

∥∥∥∥
2

w

]
dt, (3.2)

where the coefficients+1, +2, +3, and the norm‖ · ‖w are defined appropriately to measure the deviation of the
model system from the measurements of the actual flow on the channel walls atx2 = ±1 (denoted here by w).
Note that+2 is proportional to the square of the (constant) fluid density,ρ2, and+1 and+3 are proportional to the
square of the (constant) fluid viscosity,µ2, in order to make (3.2) dimensionally consistent. In the present work we
will useL2 norms such that‖f‖2

w �
∫

w f
2 dS. The initial conditionsΦ which minimizeJ(Φ) may be found by a

gradient-based search. To identify the gradient, an inner product overΩ must first be defined; in the present work,
we will useL2 inner products such that〈f ,g〉Ω �

∫
Ω
f · gdV . The functional gradientDJ/DΦ is then defined such

that, forε � 1 and for any feasibleΦ′,

J(Φ+ εΦ′) ≈ J(Φ) + ε
〈DJ
DΦ

,Φ′
〉
Ω

= J(Φ) + ε

∫
Ω

DJ

DΦ
·Φ′ dV

= J(Φ) + ε

∫ T

0

∫
w

[
+1

(∂u1

∂n̄
−m1

)∂u′
1

∂n̄
+ +2

(
p−m2

)
p′ + +3

(∂u3

∂n̄
−m3

)∂u′
3

∂n̄

]
dS dt, (3.3)

where the equation governingq′ is found by insertingΦ+ εΦ′ forΦ andq + εq′ for q in (3.1) and assumingε � 1;
collecting the terms proportional toε, this results in

Lq′ =

 ∂u′

∂t
+ (u · ∇)u′ + (u′ · ∇)u + ∇p′ − ν�u′

∇ · u′


 = 0 inΩ× (0, T ) with u′|t=0 = Φ′, u′|w = 0.

(3.4)

Note that (3.4) reflects a linear relationship betweenq′ andΦ′, though this linear relationship is not yet expressed
in a convenient form from which the functional gradientDJ/DΦ in (3.3) may be identified. Towards this end, we
perform an adjoint analysis. Defining first a duality pairing (in the present work, we will use theL2 duality pairing
〈f ,g〉Ω×(0,T ) �

∫ T
0

∫
Ω
f · gdS dt), straightforward integration by parts (see, e.g.,[4]) leads to an identity of the form

〈q∗,Lq′〉Ω×(0,T ) = 〈L∗q∗,q′〉Ω×(0,T ) + b, (3.5)

where

L∗q∗ =

−∂u∗

∂t
− u · [∇u∗ + (∇u∗)T] − ∇p∗ − ν�u∗

−∇ · u∗


 ,

b =
∫
Ω

(u∗
j u

′
j)

∣∣∣∣
t=T

t=0
dx −

∫ T

0

∫
w
n̄j

[
p∗u′

j + u∗
jp

′ + u∗
i

(
uju

′
i + u′

jui

)
− ν

(
u∗
i

∂u′
i

∂xj
− u′

i

∂u∗
i

∂xj

)]
dx dt.

Leveraging this identity, consider now an adjoint stateq∗ defined via the equation

L∗q∗ = 0 inΩ× (0, T ) with u∗∣∣
t=T = 0, (3.6)
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u∗
1 |w = +1

1

ν

(
∂u1

∂n̄
−m1

)
, u∗

2 |w = +2n̄2 (p−m2) , u∗
3 |w = +3

1

ν

(
∂u3

∂n̄
−m3

)
. (3.7)

Note that the difficulty involved with numerically solving the adjoint system given above via a backward march
from t = T to t = 0 is almost the same as the difficulty involved with solving the original system (3.1). The identity
(3.5) may be used to put all of the pieces together: inserting the perturbationEq. (3.4) and the adjointEq. (3.6)
into the identity (3.5) and simplifying, the perturbation of the cost functional given in (3.3) may be rewritten in the

Fig. 6. (a) Correlations of the actual and reconstructed quantities, and (b) the corresponding planewise norms of the state estimation error,
determined using the adjoint-based state estimation approach; (�) adjoint-based reconstruction using both skin-friction and wall-pressure
measurements, (�) adjoint-based reconstruction using skin-friction measurements alone, (· · ·) Taylor-series extrapolation using the first four
nonzero terms and both skin-friction and wall-pressure measurements. Note that the adjoint-based approach yields significantly better results
farther from the walls; cf. Figs. 1 and 2 for lower-order Taylor-series extrapolations in the immediate vicinity of the wall.
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convenient form∫
Ω

DJ

DΦ
·Φ′ dV =

∫
Ω

u∗
∣∣∣
t=0

·Φ′ dV.

As this derivation is valid for allΦ′, we may identify the functional gradient which we seek

DJ

DΦ
= u∗

∣∣∣
t=0

.

Physically, the adjoint field evaluated in the domain where the control is defined represents the sensitivity of the
cost functional (3.2) to modification of the control variable. In the present problem, this “control variable” is simply
the unknown initial condition.

Estimation of the entire state of a turbulent channel flow based on wall measurements alone is an extremely
challenging task, as the turbulent channel-flow system is governed by a nonlinear PDE exhibiting complex
multiscale dynamics which are high dimensional and rapidly evolving. Fig. 6 illustrates the best results we have
obtained so far on this challenging problem atReτ = 100, using the algorithm derived above, after 40 iterations of
the adjoint-based optimization, taking the optimization intervalT to be a relatively short 100 viscous time units, and
using a very bad initial guess in the estimator (simply the mean flow). To perform this calculation, a “truth model”
(that is, a DNS of a turbulent flow in a channel) was first computed. Based solely on the wall measurements from
this “actual flow”, a state estimate was optimized using the adjoint algorithm described above. The accuracy of this
state estimate (at the center of the optimization interval [0, T ]), as shown inFig. 6, is fairly good near the wall but
degraded near the center of the domain, as expected. The adjoint-based state estimation algorithm described above
may be significantly refined by selecting other norms, duality pairings and inner products besides the simpleL2
forms used in the above discussion. This matter is discussed thoroughly in[21], and will be explored in the context
of the present estimation problem in future work.

The primary purpose of presenting this derivation in this paper is to illustrate that there are exactly three
possibilities for forcing the relevant adjoint equation on the boundary, as shown in (3.6). The misfits of the
three measurementsm1, m2, andm3 exhaust all possibilities for the forcing of this adjoint problem from the
wall. Moreover, given the linearity of the adjoint system with respect to the boundary conditions, the gra-
dient information obtained via the misfits of the three different types of measurements in this problem is
linearly additive. As seen inFig. 6, the resulting wall-normal velocity and pressure reconstructions in the
flow are markedly improved when wall-pressure measurements are used in the adjoint-based state estimation
algorithm.

4. Discussion

Significant progress has been made in recent years in the area of boundary control of turbulent flow systems
using model-based control theory and complete state information [see, e.g.,[3] for a recent review]. However,
the dual problem of estimation of the flow state based on boundary measurements of the turbulent flow system
essentially remains open. Both problems must be solved if model-based control of turbulent flow systems is to
become engineering reality.

The present paper shows a strategy for determining a turbulent channel flow at timetbased solely on measurements
of wall skin friction and pressure available in a neighborhood of timet, without the knowledge of the initial
conditions at some timet0 < t. Numerical computations show that the resulting algorithm based on Taylor-series
expansions converges up to a few viscous units from the wall. As an alternative, a variational adjoint-based state
estimation algorithm was presented, which was shown to lead to a far better reconstruction of the flow in the whole
domain. Analysis of both of these approaches emphasizes the valuable role that pressure measurements play in the
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reconstruction of nonlinear turbulent flows. This is contrasted with linear (Stokes) problems, where the pressure
measurements can be dispensed with without affecting the reconstruction.
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